High-Speed UART USB2.0 (480 Mbps) DPDT Switch UM7227QA QFN10 1.8×1.4 UM7227MA MSOP10 #### **General Description** The UM7227QA/UM7227MA is a dual port high-speed, low-power data switch optimized for USB2.0 signal switching. The UM7227QA/UM7227MA switch is configured as double-pole/double-throw DPDT. It handles bidirectional signal flow, achieving a 750 MHz -3dB bandwidth, and a port to port crosstalk and isolation at -42dB at 250MHz. The UM7227QA/UM7227MA operates from a single +2.7V to +5.5V supply, with current consumption less than $1\,\mu\text{A}$. The UM7227QA/UM7227MA features wide bandwidth and low bit-to-bit skew allow it to pass high-speed differential signal with good signal integrity, offers little or no attenuation of the high-speed signals at the outputs. Its high channel-to-channel crosstalk rejection results in minimal noise interface. Its bandwidth is wide enough to pass high-speed USB2.0 differential signals (480Mbps). The control logic threshold is guaranteed to be compatible with 1.8V logic. The UM7227QA is available in Pb-free QFN10 package (1.4mm×1.8mm×0.55mm), the UM7227MA is available in Pb-free MSOP10 package. It is ideal for portable high speed mix signal switching application. ## **Applications** - Differential Signal Data Routing - USB2.0 Signal Routing - Cell Phone, PDA, Digital Camera and Notebook - LCD Monitor, TV and Set-Top Box - MIPI Signal Routing #### **Features** - Ron is Typically 9.9 Ω at V_{CC} =3.6V - OVT on D+ and D- up to 5.5V - Power OFF Protection: When V_{CC}=0V, D+ and D- can Tolerate up to 5 5V - Low Crosstalk: -42dB (250MHz) - Low Current Consumption: <1 μA - Near-Zero Propagation Delay: 250ps - Channel On-Capacitance: 6.5pF(Typical) - V_{CC} Operating Range: +2.7V to +5.5V - 550MHz Bandwidth (or Data Frequency) - Lead (Pb)-Free QFN10 Packages - Pb-Free MSOP10 Package - ESD Rating: ±5kV I/O to GND # **Pin Configurations** **Top View** # **Pin Description** | P | in | Name | F | |----------|----------|----------|-------------------------| | UM7227QA | UM7227MA | Name | Function | | 1 | 3 | D+ | Data Ports | | 2 | 4 | D- | Data Ports | | 3 | 5 | GND | Ground Connection | | 4 | 6 | HSD1- | Data Ports | | 5 | 7 | HSD1+ | Data Ports | | 6 | 8 | HSD2- | Data Ports | | 7 | 9 | HSD2+ | Data Ports | | 8 | 10 | ŌĒ | Output Enable | | 9 | 1 | V_{CC} | Positive Supply Voltage | | 10 | 2 | S | Select Input | # **Ordering Information** | Part Number | Packaging Type | Marking Code | Shipping Qty | |-------------|----------------|--------------|--------------------------------| | UM7227QA | QFN10 1.8×1.4 | C7 | 3000pcs/7 Inch
Tape & Reel | | UM7227MA | MSOP10 | UM7227MA | 3000pcs/13 Inch
Tape & Reel | # **Function Table** | OE | S | HSD1+, HSD1- | HSD2+, HSD2- | |---------------|---|--------------|--------------| | 1 | X | OFF | OFF | | 0 | 0 | ON | OFF | | 0 | 1 | OFF | ON | # **Absolute Maximum Ratings** | Symbol | Parameter | Limit | Unit | |-----------|------------------------------|--------------|------------| | V_{CC} | Supply Voltage | -0.5 to +6.5 | | | V_{IS} | Analog Switch Input Voltage | -0.5 to +6.5 | V | | V_{IN} | Digital Select Input Voltage | -0.5 to +6.5 | | | I_D | Continuous DC Current | 50 | mA | | P_D | Power Dissipation | 0.5 | W | | To | Operating Temperature Range | -40 to +85 | $^{\circ}$ | | T_{STG} | Storage Temperature Range | -65 to +150 | | ### **DC Electrical Characteristics** (Typical: $T_A = +25$ °C, unless otherwise noted.) | Symbol | Parameter | Test Conditions | V _{CC} (V) | Min | Тур | Max | Unit | |--------------------------|--|---|---------------------|------|------|------|------| | I _{IN} | Input Leakage Current | $0 \le V_{IS} \le V_{CC}$ | 3.6 | -1.0 | | 1.0 | μΑ | | I_{OFF} | Power Off Leakage
Current | 0≤V _{IS} ≤V _{CC} | 0 | -1.0 | | 1.0 | μΑ | | I_{CCT} | Increase in I _{CC} per
Control Voltage | V _{IN} =2.6V | 3.6 | | | 10 | μΑ | | I_{OZ} | OFF State Leakage
Current | $0 \le V_{IS} \le V_{CC}$ | 3.6 | -1.0 | | 1.0 | μΑ | | I_{CC} | Quiescent Supply
Current | V _{IS} =V _{CC} or GND | 3.6 | | | 1.0 | μΑ | | V_{IH} | Input High Voltage | | 3.0 to 3.6 | 1.3 | | | V | | $V_{\rm IL}$ | Input Low Voltage | | 3.0 to 3.6 | | | 0.5 | V | | V_{IK} | Clamp Diode Voltage | I _{IS} =-18mA | 3.0 | | | -1.2 | V | | R _{ON} | On-Resistance
(Note 1) | V_{IS} =0 to 0.4V
I_{D} =8mA | 3.0 | | 9.8 | 13 | Ω | | ΔR_{ON} | On Resistance Match
Between Channels
(Note 1, 2) | V_{IS} =0 to 0.4V I_{D} =8mA | 3.0 | | 0.35 | | Ω | | R _{FLAT} | On Resistance Flatness (Note 1, 2) | V_{IS} =0 to 1.0V
I_{D} =8mA | 3.0 | | 2 | | Ω | Note 1: Guaranteed by design. Resistance measurements do not include test circuit or package resistance. Note 2: Parameter is characterized but not tested in production. ## **AC Electrical Characteristics** (Typical: $T_A = +25$ °C, unless otherwise noted.) | Symbol | Parameter | rameter Test Conditions V _{CC} (V) Min | | Тур | Max | Unit | | |--------------------|---|---|------------|-----|------|------|-----| | t _{ON} | Turn On Time | V _{IS} =0.8V | 3.0 to 3.6 | | 13 | 30 | ns | | t_{OFF} | Turn Off Time | V _{IS} =0.8V 3.0 to 3.6 | | 12 | 25 | ns | | | t _{BBM} | Break Before
Make Time
(Note 3) | V _{IS} =0.8V 3.0 to 3.6 2 | | 4.7 | 6.5 | ns | | | t_{PD} | Propagation
Delay | C _L =10pF | 3.0 to 3.6 | | 0.25 | | ns | | t _{SK(O)} | Channel to
Channel Skew | C _L =10pF | 3.0 to 3.6 | | 0.05 | | ns | | O _{IRR} | Off Isolation | R_L =50 Ω ,
f=250MHz | 3.0 to 3.6 | | -42 | | dB | | X _{TALK} | Crosstalk | R_L =50 Ω ,
f=250MHz | 3.0 to 3.6 | | -42 | | dB | | DW | 2dD Dandyyidth | R_L =50 Ω
C_L =0pF | 3.0 to 3.6 | | 750 | | MHz | | BW | -3dB Bandwidth | RL= 50Ω
C _L = 5 pF | 3.0 to 3.6 | | 550 | | MHz | | USB Hig | h-Speed-Related AC | Electrical Characteristics | | | | | | | t _{SK(P)} | Skew of Opposite
Transitions of the
Same Output
(Note 3) | C_L =5pF
R_L =50 Ω | | | 20 | | ps | | t _J | Total Jitter
(Note 3) | $C_L=5pF$ $R_L=50\Omega$ $t_R=t_F=500ps(10-90\%)$ at $480Mbps(PRBS=2^{15}-1)$ | | | 200 | | ps | | Capacita | nce | | | | | | | | C _{IN} | Control Pin Input
Capacitance
(Note 4) | V _{CC} =0V | | | 2.5 | | pF | | Coff | HSD+ HSD- Off
Capacitance
(Note 4) | $V_{CC}=V_{IS}=3.3V$, OE=3.3V | | | 4.5 | | pF | | C _{ON} | HSD+ HSD- ON
Capacitance
(Note 4) | V _{CC} =3.3V, OE=0V | | | 7.0 | | pF | Note 3: Guaranteed by design. Note 4: T_A=+25 °C, f=1MHz, Capacitance is characterized but not tested in production. # **Typical Performance Characteristics** # $Bandwidth \; (C_L \!\!=\!\! 0pF)$ ## Bandwidth (C_L=5pF) ## **Typical Performance Characteristics (Continued)** ### **Off Isolation** #### Crosstalk # **Typical Performance Characteristics (Continued)** Eye Pattern: 480Mbps USB Signal with Switch HSD1+ and HSD1- Path # **Typical Performance Characteristics (Continued)** # **Test Diagrams** Figure 1 On Resistance Figure 2 Off Leakage Figure 3 AC Test Circuit Load Figure 4 Turn-On/Turn-Off Waveforms Figure 5 Break-Before-Make Interval Timing ## **Test Diagrams (Continued)** Figure 6 Bandwidth Figure 7 Channel Off Isolation Figure 8 Non-Adjacent Channel-to-Channel Crosstalk # **Applications Information** #### **Power-Off Protection** For a VBUS short circuit, the switch is expected to withstand such a condition for at least 24 hours. The UM7227QA/UM7227MA has specially designed circuitry which prevents unintended signal bleed through as well as guaranteed system reliability during a power-down, over-voltage condition. The protection has been added to the common pins (D+, D-). #### **Power-On Protection** The USB 2.0 specification also notes that the USB device should be capable of withstanding a VBUS short during transmission of data. This modification works by limiting current flow back into the V+ rail during the over-voltage event so current remains within the safe operating range. In this application, the switch passes the full 5.25V input signal through to the selected output while maintaining specified off isolation on the un-selected pins. # **Package Information** # **UM7227QA QFN10 1.8×1.4** ## **Outline Drawing** | DIMENSIONS | | | | | | | | | |------------|-------------|--------|------|--------|---------|-------|--|--| | Cb al | MILLIMETERS | | | INCHES | | | | | | Symbol | Min | Тур | Max | Min | Тур | Max | | | | A | 0.50 | 0.55 | 0.60 | 0.020 | 0.022 | 0.024 | | | | A1 | 0.00 | - | 0.05 | 0.000 | - | 0.002 | | | | A3 | (|).15RE | F | (| 0.006RE | F | | | | b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 | | | | D | 1.35 | 1.40 | 1.45 | 0.053 | 0.055 | 0.057 | | | | Е | 1.75 | 1.80 | 1.85 | 0.069 | 0.071 | 0.073 | | | | e | 0.40BSC | | | C | 0.016BS | | | | | L | 0.30 | 0.40 | 0.50 | 0.012 | 0.016 | 0.020 | | | | L1 | 0.40 | 0.50 | 0.60 | 0.016 | 0.020 | 0.024 | | | ## **Land Pattern** #### NOTES: - 1. Compound dimension: 1.80×1.40; - 2. Unit: mm - 3. General tolerance ±0.05mm unless otherwise specified; - 4. The layout is just for reference. ## **Tape and Reel Orientation** ## **UM7227MA MSOP10** # **Outline Drawing** | DIMENSIONS | | | | | | | | | |------------|------------------|------|------|--------|-------|-------|--|--| | Cb al | MILLIMETERS | | | INCHES | | | | | | Symbol | Min | Тур | Max | Min | Тур | Max | | | | A | - | - | 1.10 | 1 | - | 0.043 | | | | A1 | 0.00 | - | 0.15 | 0.000 | - | 0.006 | | | | A2 | 0.75 | 0.85 | 0.95 | 0.030 | 0.033 | 0.037 | | | | A3 | 0.25 | 0.35 | 0.39 | 0.010 | 0.014 | 0.015 | | | | b | 0.18 | - | 0.28 | 0.007 | - | 0.011 | | | | c | 0.09 | - | 0.23 | 0.004 | - | 0.009 | | | | D | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | | | Е | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | | | E1 | 4.70 | 4.90 | 5.10 | 0.185 | 0.193 | 0.201 | | | | e | 0.50BSC 0.020BSC | | | | C | | | | | L | 0.40 | 0.60 | 0.80 | 0.016 | 0.024 | 0.031 | | | | θ | 0 ° | - | 8° | 0 ° | - | 8° | | | ## **Land Pattern** ### NOTES: - 1. Compound dimension: 3.00×3.00; - 2. Unit: mm; - 3. General tolerance ± 0.05 mm unless otherwise specified; - 4. The layout is just for reference. # **Tape and Reel Orientation** #### **GREEN COMPLIANCE** Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions. All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit: http://www.union-ic.com/index.aspx?cat_code=RoHSDeclaration #### IMPORTANT NOTICE The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.