0.5Ω Low-Voltage Dual SPDT Analog Switch # UM4684H *CSP10 2.0×1.5* UM4684EEUE *MSOP10* #### **General Description** The UM4684 is a sub 1Ω (0.5 Ω at 2.7V) dual SPDT analog switch designed for low voltage applications. The UM4684 has on-resistance matching(less than 0.05Ω at 2.7V) and flatness (less than 0.2Ω at 2.7V) that are guaranteed over the entire voltage range. Additionally, low logic thresholds make the UM4684 an ideal interface to low voltage DSP control signals. The UM4684 has fast switching speed with break-before-make guaranteed. In the ON condition, all switching elements conduct equally in both directions. OFF-isolation and crosstalk is -69dB at 100kHz. The UM4684 is built on high-density low voltage CMOS process, and contains the additional benefit of 2000V ESD protection. As a committed partner to the community and the environment, Union manufactures this product with lead (Pb)-free device terminations. #### **Applications** - Cellular Phones - Speaker Headset Switching - Audio and Video Signal Routing - PCMCIA Cards - Battery Operated Systems - Relay Replacement - Power Routing - Communication Circuits #### **Features** - CSP10 & MSOP10 Packages - ESD Protection >2000V - +1.8V to +5.5V Single Supply Operation - NC Switch R_{ON} : 0.5Ω (+2.7V Supply) - NO Switch R_{ON} : 0.6 Ω (+2.7V Supply) - R_{ON} Match between Channels: 0.05Ω Max (+2.7V Supply) - R_{ON} Flatness over Signal Range: 0.2Ω Max (+2.7V Supply) - 1.8V Logic Compatibility - Low Crosstalk: -69dB (100kHz) - High Off-Isolation: -69dB (100kHz) ## **Ordering Information** | Part Number | Temp. Range | Packaging Type | Marking Code | Shipping Qty | |-------------|---------------|----------------|--------------|--------------------------------| | UM4684H | -40 ℃ to 85 ℃ | CSP10 2.0×1.5 | A | 3000pcs/7 Inch
Tape & Reel | | UM4684EEUE | -40 ℃ to 85 ℃ | MSOP10 | UM4684EEUE | 4000pcs/13 Inch
Tape & Reel | ## **Pin Configurations** **Top View** ## **Ball Mapping for UM4684H** | | 1 | 2 | 3 | 4 | |---|-----------------|-----------------|------------------|-----------------| | Α | NC ₂ | IN ₂ | COM ₂ | NO ₂ | | В | GND | | | V+ | | С | NC ₁ | IN ₁ | COM₁ | NO ₁ | Transparent Top View ## **Pin Description** | Pin | Pin N | umber | | | |------|------------------|--------|--|--| | Name | CSP10
2.0×1.5 | MSOP10 | Function | | | NC_ | A1, C1 | 5, 7 | Analog Switch—Normally Closed Terminal | | | IN_ | A2, C2 | 4, 8 | Digital Control Input | | | COM_ | A3, C3 | 3, 9 | Analog Switch—Common Terminal | | | NO_ | A4, C4 | 2, 10 | Analog Switch—Normally Open Terminal | | | V+ | B4 | 1 | Positive Supply Voltage Input | | | GND | B1 | 6 | Ground | | #### **Function Table** | IN_ | NO_ | NC_ | |-----|-----|-----| | 0 | OFF | ON | | 1 | ON | OFF | #### **Absolute Maximum Ratings (Note 1)** | Parameter | | Value | Unit | |---|-------------------------------|------------|--------------| | Voltage on V+ Pin (Reference to GND) | | -0.3 to +6 | V | | Voltage on IN_, COM_, NC_, NO_ Pins
(Reference to GND) | -0.3 to (V ₊ +0.3) | V | | | Continuous Current (NO_, NC_, COM_ | ±300 | mA | | | Peak Current (Pulsed at 1 ms, 10% Duty | ±500 | mA | | | Storage Temperature | | -65 to 150 | $\mathcal C$ | | Package Solder Reflow Conditions | IR/Convection | 250 | $\mathcal C$ | | (Note 3) | >2 | kV | | | Power Dissipation (Packages) (Note 4) | CSP10 (Note 5) | 457 | mW | - Note 1: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. - Note 2: Signals on NC_, NO_, or COM_ or IN_ exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings. - Note 3: Refer to IPC/JEDEC (J-STD-020B). - Note 4: All bumps welded or soldered to PC Board. - Note 5: Derate 5.7 mW/C above 70 C. # Electrical Characteristics (V_{+} =3 $V_{,}$ ±10% deviation, V_{IN} =0.5 or 1.4 $V_{,}$ (Note 6)) | | | Test Conditions | Temp | (-4 | Limits
40 °C to 85 ° | (C) | | | |--|--|---|--------------|-----------------|-------------------------|-----------------|------|--| | Parameter | Symbol Otherwise Unless
Specified | | (Note 7) | Min
(Note 9) | Typ (Note 8) | Max
(Note 9) | Unit | | | Analog Switch | | | | | | | | | | Analog Signal
Range (Note 10) | $\begin{array}{c} V_{NO} \\ V_{NC} \\ V_{COM} \end{array}$ | | Full | 0 | | V_{+} | V | | | On-Resistance
(Note 10) | Ron | | Room
Full | | 0.5 | 0.8
1.0 | | | | R _{ON} Flatness
(Note 10) | R _{on}
Flatness | V ₊ =2.7V,
V _{COM} =0.6/1.5V,
I _{NO} , I _{NC} =100mA | Room | | | 0.15 | Ω | | | On-Resistance
Match Between
Channels (Note 10) | $\Delta R_{DS(on)}$ | INO, INC-TOOMIZY | Room | | | 0.05 | | | | Switch Off Leakage | $I_{NO(off)}, \\ I_{NC(off)}$ | V ₊ =3.3V,
V _{NO} ,V _{NC} =0.3V/3V, | Room
Full | -2
-20 | | 2
20 | | | | Current | $I_{COM(off)}$ | $V_{\text{COM}} = 3V/0.3V$ | Room
Full | -2
-20 | | 2
20 | nA | | | Channel-On
Leakage Current | I _{COM(on)} | $V_{+}=3.3V,$ $V_{NO}, V_{NC}=V_{COM}$ $=0.3V/3V$ | Room
Full | -2
-20 | | 2
20 | | | | Digital Control | | | | | | | | | | Input High Voltage
(Note 10) | $V_{\rm INH}$ | | Full | 1.4 | | | V | | | Input Low Voltage | $V_{\rm INL}$ | | Full | | | 0.5 | | | | Input Capacitance | C_{IN} | | Full | | 10 | | pF | | | Input Current | $I_{INL} \\ or \ I_{INH}$ | $V_{IN}=0$ or V_{+} | Full | -1 | | 1 | μΑ | | | Dynamic Character | istics | | | | | | | | | Turn-On Time | t _{ON} | V_{NO} or V_{NC} =2.0V, | Room
Full | | 52 | 82
90 | na | | | Turn-Off Time | $t_{ m OFF}$ | $R_L=50\Omega$, $C_L=35pF$ | Room
Full | | 43 | 73
78 | ns | | | Break-Before-Make
Time | $t_{\rm d}$ | V_{NO} or V_{NC} =2.0V, R_L =50 Ω , C_L =35pF | Full | 1 | 6 | | ns | | | Charge Injection (Note 10) | Q _{INJ} | $\begin{array}{c} C_L \!\!=\!\! 1nF, \\ V_{GEN} \!\!=\!\! 1.5V, \\ R_{GEN} \!\!=\!\! 0\Omega \end{array}$ | Room | | 21 | | рC | | | Off-Isolation
(Note 10) | O _{IRR} | R_L =50 Ω , C_L =5pF, f =100kHz | Room | | -69 | | dB | | | Crosstalk (Note 10) | X _{TALK} | 1—1 OOKI IZ | Room | | -69 | | | | | -3dB Bandwidth | BW | $R_L\!\!=\!\!50\Omega,C_L\!\!=\!\!5pF$ | Room | | 20 | | MHz | | | NO NC Off
Capacitance
(Note 10) | $C_{NO(off)} \\ C_{NC(off)}$ | $V_{IN}=0 ext{ or } V_+$, $f=1MHz$ | Room
Room | | 145
145 | | σŪ | | | |--|------------------------------|--------------------------------------|--------------|-----|------------|------------|----|--|--| | Channel On
Capacitance
(Note 10) | $C_{NO(on)} \\ C_{NC(on)}$ | | Room
Room | | 406
406 | | pF | | | | Power Supply | Power Supply | | | | | | | | | | Power Supply
Range | V_{+} | | Full | 1.8 | | 5.5 | V | | | | Power Supply
Current | I ₊ | V _{IN} =0 or V ₊ | Room
Full | | 0.001 | 1.0
1.0 | μΑ | | | - Note 6. V_{IN}=input voltage to perform proper function. - Note 7. Room=25 ℃, Full=as determined by the operating suffix. - Note 8. Typical values are for design aid only, not guaranteed nor subjected to production testing. - Note 9. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet. - Note 10. Guaranteed by design, nor subjected to production testing. ## **Typical Operating Characteristics** ## Ron vs. Vcom and Supply Voltage ## Ron vs. Vcom and Temperature (NC1) ## **Supply Current vs. Input Switching Frequency** ## Switching Threshold vs. Supply Voltage (V) ## **Typical Operating Characteristics (Continued)** ## **Test Circuits/Timing Diagrams** FIGURE 1. Switching Time FIGURE 2. Break-Before-Make Interval FIGURE 3. Charge Injection FIGURE 4. Off-Isolation FIGURE 5. Channel Off/On Capacitance #### **Applications Information** ## **Digital Control Inputs** The UM4684 logic inputs accept up to +5.5V regardless of supply voltage. For example, with a +3.3V supply, IN_ may be driven low to GND and high to 5.5V. Driving IN_ rail-to-rail minimizes power consumption. Logic levels for a +1.8V supply are 0.5V (low) and 1.4V (high). #### **Analog Signal Levels** Analog signals that range over the entire supply voltage (V+ to GND) is passed with very little change in on-resistance (see Typical Operating Characteristics). The switches are bidirectional, so the NO_, NC_, and COM_ pins can be either inputs or outputs. #### **Caution** Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to devices. Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current limited. If this sequencing is not possible, and if the analog inputs are not current limited to <20mA, add a small signal diode (D1) as shown in Figure 6. Adding a protection diode reduces the analog range to a diode drop (about 0.7V) below V+ (for D1). RON increases slightly at low supply voltages. Maximum supply voltage (V+) must not exceed +6V. Protection diode D1 also protects against some over voltage situations. No damage will result on Figure 6's circuit if the supply voltage is below the absolute maximum rating applied to an analog signal pin. Figure 6 # **Package Information** ## UM4684H CSP10 2.0×1.5 ## **Outline Drawing** | DIMENSIONS | | | | | | | | | |------------|-------------|-------|--------|----------|--------|--------|--|--| | Crombal | MILLIMETERS | | INCHES | | | | | | | Symbol | Min | Тур | Max | Min | Тур | Max | | | | A | 0.68 | 0.72 | 0.76 | 0.027 | 0.028 | 0.030 | | | | A1 | 0.21 | 0.231 | 0.24 | 0.0083 | 0.0091 | 0.0094 | | | | A2 | 0.47 | 0.49 | 0.52 | 0.0185 | 0.0193 | 0.0205 | | | | b | 0.27 | 0.31 | 0.34 | 0.011 | 0.012 | 0.013 | | | | D | 2.00 | - | 2.10 | 0.079 | - | 0.083 | | | | Е | 1.50 | - | 1.60 | 0.059 | - | 0.063 | | | | e | 0.50BSC | | | 0.020BSC | | | | | ## **Land Pattern** #### NOTES: - 1. Bump is Lead Free Sn/Ag/Cu; - 2. Unit: mm; - 3. Non-solder mask defined copper landing pad; - 4. Laser Mark on silicon die back; back-lapped. ## **Tape and Reel Orientation** ## **UM4684EEUE MSOP10** ## **Outline Drawing** | DIMENSIONS | | | | | | | | |------------|-------------|------------------|------|--------|-------|-------|--| | Comple of | MILLIMETERS | | | INCHES | | | | | Symbol | Min | Тур | Max | Min | Тур | Max | | | A | - | - | 1.10 | 1 | - | 0.043 | | | A1 | 0.00 | - | 0.15 | 0.000 | - | 0.006 | | | A2 | 0.75 | 0.85 | 0.95 | 0.030 | 0.033 | 0.037 | | | A3 | 0.25 | 0.35 | 0.39 | 0.010 | 0.014 | 0.015 | | | b | 0.18 | - | 0.28 | 0.007 | - | 0.011 | | | c | 0.09 | - | 0.23 | 0.004 | - | 0.009 | | | D | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | | E | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | | E1 | 4.70 | 4.90 | 5.10 | 0.185 | 0.193 | 0.201 | | | e | (| 0.50BSC 0.020BSC | | | C | | | | L | 0.40 | 0.60 | 0.80 | 0.016 | 0.024 | 0.031 | | | θ | 0 ° | - | 8° | 0 ° | - | 8° | | ## **Land Pattern** ## NOTES: - 1. Compound dimension: 3.00×3.00; - 2. Unit: mm; - 3. General tolerance ± 0.05 mm unless otherwise specified; - 4. The layout is just for reference. ## **Tape and Reel Orientation** #### **GREEN COMPLIANCE** Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions. All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit: http://www.union-ic.com/index.aspx?cat_code=RoHSDeclaration #### **IMPORTANT NOTICE** The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.