Bidirectional Voltage Level Translator for Open-Drain and Push-Pull Applications UM2001P SOT363 ### **General Description** The UM2001P is a bidirectional voltage level translator operational from 1.0V to 3.6V (V_{CCA}) and 1.8V to 5.5V (V_{CCB}), which allows bidirectional voltage translations between 1.0V and 5V without the need for a direction pin in open-drain or push-pull applications. The UM2001P is a 1-bit level translator. Its transmission speeds are below 33MHz for an open-drain system with a 50pF capacitance and a pull-up resistor of 197 Ω . The low ON-state resistance (R_{on}) of the switch allows connections to be made with minimal propagation delay. When EN is high, the translator switch is ON, and the A I/O is connected to the B I/O, allowing bidirectional data flow between ports. When EN is low, the translator switch is off, and a high-impedance state exists between ports. The translators provide excellent ESD protection to lower voltage devices, and at the same time protect less ESD-resistant devices. ### **Applications** - SPI, MICROWIRE, and I²C Level Translation - Low-Voltage ASIC Level Translation - Smart Card Readers - Cell-phone Cradles - Portable POS Systems - Portable Communication Devices - Low-Cost Serial Interfaces - Cell-Phones - GPS - Telecommunications Equipment - Consumer Electronics - Household Appliances #### **Features** - Provides Bidirectional Voltage Translation with No Direction Pin - Less than 1.5ns Maximum Propagation Delay - Low 3.5Ω ON-State Connection between Input and Output Ports Provides Less Signal Distortion - 5V Tolerant I/O Ports to Support Mixed-Mode Signal Operation - High-Impedance A and B Pins for EN=LOW - Latch up Free Operation - Flow through Pinout for Ease of Printed-Circuit Board Trace Routing - ESD Protection Exceeds: 4kV HBM per JESD22-A114 - Package Offered: SOT363 ### **Pin Configurations** # # **Top View** ## **Pin Description** | Pin Number | Symbol | Function | | | | | | | |------------|--------|--|--|--|--|--|--|--| | 1 | A | Low-voltage side; connected to VCCA through a pull-up resistor | | | | | | | | 2 | VCCA | Low-voltage side reference supply voltage for A | | | | | | | | 3 | GND | Ground (0V) | | | | | | | | 4 | EN | Switch enable input; connected to VCCB and pulled-up through a high resistor | | | | | | | | 5 | VCCB | High-voltage side reference supply voltage for B | | | | | | | | 6 | В | High-voltage side; connected to VCCB through a pull-up resistor | | | | | | | ## **Ordering Information** | Part Number | Packaging Type | Marking Code | Shipping Qty | |-------------|----------------|--------------|------------------------------| | UM2001P | SOT363 | UA3 | 3000pcs/7Inch
Tape & Reel | ### **Absolute Maximum Ratings (Note 1)** Over operating free-air temperature range (unless otherwise noted) | Symbol | Parameter | Value | Unit | | |-------------------|--------------------------------|---------------------|-------------|--------------| | V_{CCA} | Reference Voltage (A) | -0.5 to +6 | V | | | V_{CCB} | Reference Voltage (B) | -0.5 to +6 | V | | | $V_{\rm I}$ | Input Voltage | -0.5 (Note 2) to +6 | V | | | $V_{\rm I/O}$ | Voltage on an Input/Output Pin | -0.5 (Note 2) to +6 | V | | | I_{CH} | Channel Current (DC) | +128 | mA | | | I_{IK} | Input Clamp Current | $V_I < 0V$ | -50 | mA | | T_{STG} | Storage Temperature | | -65 to +150 | $\mathcal C$ | - Note 1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - Note 2: The input and input/output negative voltage ratings may be exceeded if the input and input/output clamp current ratings are observed. # **Recommended Operating Conditions** | Symbol | Parameter | Conditions | Min | Max | Unit | |---------------------------|--------------------------------|-----------------------|-----|-----|--------------| | $V_{\rm I/O}$ | Voltage on an Input/Output Pin | A, B | 0 | 5.5 | V | | V _{CCA} (Note 3) | Reference Voltage (A) | VCCA | 0 | 5.5 | V | | V _{CCB} (Note 3) | Reference Voltage (B) | VCCB | 0 | 5.5 | V | | V _{I(EN)} | Input Voltage on Pin EN | | 0 | 5.5 | V | | $I_{sw(pass)}$ | Pass Switch Current | | | 64 | mA | | T_{AMB} | Ambient Temperature | Operating in Free-Air | -40 | +85 | $\mathcal C$ | Note 3: V_{CCA}≤V_{CCB}−1V for best results in level shifting applications. ## **Electrical Characteristics** T_{AMB} =-40 °C to +85 °C, unless otherwise specified. | Symbol | Parameter | Conditions | Min | Typ
(Note 4) | Max | Unit | |----------------------|--|---|-----|-----------------|------------------|------| | V_{IK} | Input Clamping
Voltage | $\begin{array}{c} I_{I}\!\!=\!\!-18mA; \\ V_{I(EN)}\!\!=\!\!0V \end{array}$ | | | -1.2 | V | | I _{IH} | HIGH-Level
Input Current | $\begin{array}{c} V_{I}\!\!=\!\!5V; \\ V_{I(EN)}\!\!=\!\!0V \end{array}$ | | | 5 | μΑ | | C _{i(EN)} | Input Capacitance on Pin EN | V _I =0V or 3V | | 12 | | pF | | $C_{\text{io(off)}}$ | Off-State
Input/Output
Capacitance | $\begin{array}{c} A, B; \\ V_0 = 0V \text{ or } 3V; \\ V_{I(EN)} = 0V \end{array}$ | | 10 | 12 | pF | | C _{io(on)} | On-State
Input/Output
Capacitance | $\begin{array}{c} A, B; \\ V_0 = 0V \text{ or } 3V; \\ V_{I(EN)} = 3V \end{array}$ | | 8 | 12.5
(Note 5) | pF | | D | ON-State
Resistance | $\begin{array}{c} A, B; \\ V_{I}\!\!=\!\!0V; I_{O}\!\!=\!\!64mA; \\ V_{I(EN)}\!\!=\!\!4.5V \ (Note \ 7) \end{array}$ | 1 | 2.5 | 5.0 | Ω | | $ m R_{on}$ | (Note 6) | $\begin{array}{c} \text{A, B;} \\ \text{V}_{\text{I}} = 2.4 \text{V; I}_{\text{O}} = 15 \text{mA;} \\ \text{V}_{\text{I(EN)}} = 4.5 \text{V} \end{array}$ | | 4.5 | 7.5 | 52 | Note 4: All typical values are at T_{AMB} =25 °C. Note 7: Guaranteed by design. Note 5: Not production tested, maximum value based on characterization data of typical parts. Note 6: Measured by the voltage drop between the A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lowest voltage of the two terminals. # **Switching Characteristics (Translating Down)** Over recommended operating free-air temperature range (unless otherwise noted). Values guaranteed by design. | | Donomoton | Test | $C_L=50pF$ | | $C_L=30pF$ | | C _L =15pF | | Unit | |-------------------------|---|------------------------------------|------------|----------|------------|-----|----------------------|-----|------| | Symbol | Parameter | Conditions | Min | Max | Min | Max | Min | Max | Unit | | $V_{I(EN)} = 3.3$ | $V_{I(EN)}$ =3.3V; V_{IH} =3.3V; V_{IL} =0V; V_{M} =1.15V (see Figure 1). | | | | | | | | | | t _{PLH} | LOW to
HIGH
Propagation
Delay | from (Input)
B to (Output)
A | 0 | 3.5 | 0 | 2.7 | 0 | 2.2 | ns | | $t_{ m PHL}$ | HIGH to
LOW
Propagation
Delay | | 0 | 3.5 | 0 | 3.0 | 0 | 2.3 | ns | | V _{I(EN)} =2.5 | V; V _{IH} =2.5V; V _I | $_{L}=0V; V_{M}=0.75V$ | / (see Fi | gure 1). | | | | | | | t _{PLH} | LOW to
HIGH
Propagation
Delay | from (Input) B to (Output) A | 0 | 3.5 | 0 | 2.7 | 0 | 2.2 | ns | | $t_{ m PHL}$ | HIGH to
LOW
Propagation
Delay | | 0 | 4.0 | 0 | 3.0 | 0 | 2.3 | ns | # **Switching Characteristics (Translating Up)** Over recommended operating free-air temperature range (unless otherwise noted). Values guaranteed by design. | Cruss b al | Damamatan | Test | $C_L=$ | 50pF | $C_L=3$ | 30pF | $C_L=1$ | 15pF | T 1 24 | | |-------------------------|--|------------------------|---------------------|---------------------|---------|----------|---------|------|--------|--| | Symbol | Parameter | Conditions | tions Min Max Min M | Max | Min | Max | Unit | | | | | V _{I(EN)} =3.3 | $V_{I(EN)}$ =3.3V; V_{IH} =2.3V; V_{IL} =0V; V_{TT} =3.3V; V_{M} =1.15V; R_{L} =300 Ω (see Figure 1). | | | | | | | | | | | t _{PLH} | LOW to
HIGH
Propagation
Delay | from (Input) | 0 | 3.35 | 0 | 2.5 | 0 | 2.0 | ns | | | t _{PHL} | HIGH to
LOW
Propagation
Delay | A to (Output) B | 0 | 4.35 | 0 | 3.25 | 0 | 2.4 | ns | | | V _{I(EN)} =2.5 | $V; V_{IH}=1.5V; V_{I}$ | $_{L}=0V; V_{TT}=2.5V$ | $V_{\rm M}=0.0$ | 75V; R _L | =300Ω (| see Figu | ıre 1). | | | | | t _{PLH} | LOW to
HIGH
Propagation
Delay | from (Input) | 0 | 3.35 | 0 | 2.5 | 0 | 2.0 | ns | | | t _{PHL} | HIGH to
LOW
Propagation
Delay | A to (Output)
B | 0 | 4.5 | 0 | 3.5 | 0 | 2.5 | ns | | ### **Applications Information** #### **Detail Description** The UM2001P is a bidirectional voltage level translator operational from 1.0V to 3.6V (V_{CCA}) and 1.8V to 5.5V (V_{CCB}), which allows bidirectional voltage translations between 1.0V and 5V without the need for a direction pin in open-drain or push-pull applications. When the A or B port is LOW, the clamp is in the ON-state and a low resistance connection exists between the A and B ports. The low ON-state resistance (R_{on}) of the switch allows connections to be made with minimal propagation delay. Assuming the higher voltage is on the B port when the B port is HIGH, the voltage on the A port is limited to the voltage set by V_{CCA} . When the A port is HIGH, the B port is pulled to the drain pull-up supply voltage ($V_{pu(D)}$) by the pull-up resistors. This functionality allows a seamless translation between higher and lower voltages selected by the user without the need for directional control. When EN is HIGH, the translator switch is on, and the A I/O is connected to the B I/O, allowing bidirectional data flow between ports. When EN is LOW, the translator switch is off, and a high-impedance state exists between ports. The EN input circuit is designed to be supplied by V_{CCB}. To ensure the high-impedance state during power-up or power-down, EN must be LOW. All channels have the same electrical characteristics and there is minimal deviation from one output to another in voltage or propagation delay. This is a benefit over discrete transistor voltage translation solutions, since the fabrication of the switch is symmetrical. #### **Enable and Disable** (1) The applied voltages at V_{CCA} and $V_{\text{pu(D)}}$ should be such that V_{CCB} is at least 1 V higher than V_{CCA} for best translator operation. Figure 2. Typical Application Circuit (Switch Always Enabled) (1) In the Enabled mode, the applied enable voltage $V_{I(EN)}$ and the applied voltage at V_{CCA} should be such that V_{CCB} is at least 1 V higher than V_{CCA} for best translator operation. Figure 3. Typical Application Circuit (Switch Enable Control) #### **Bidirectional Translation** For the bidirectional clamping configuration (higher voltage to lower voltage or lower voltage to higher voltage), the EN input must be connected to VCCB and both pins pulled to HIGH side $V_{pu(D)}$ through a pull-up resistor (typically 200k Ω). This allows VCCB to regulate the EN input. A filter capacitor on VCCB is recommended. The master output driver can be totem pole or open-drain (pull-up resistors may be required) and the slave device output can be totem pole or open-drain (pull-up resistors are required to pull the B output to $V_{pu(D)}$). However, if either output is totem pole, data must be unidirectional or the outputs must be 3-stateable and be controlled by some direction-control mechanism to prevent HIGH-to-LOW contentions in either direction. If both outputs are open-drain, no direction control is needed. The reference supply voltage (V_{CCA}) is connected to the processor core power supply voltage. When VCCB is connected through a $200k\Omega$ resistor to a 3.3V to 5.5V $V_{pu(D)}$ power supply, and V_{CCA} is set between 1.0V and $(V_{pu(D)}-1V)$, the output of A has a maximum output voltage equal to VCCA, and the output of B has a maximum output voltage equal to $V_{pu(D)}$. #### **Application Operating Conditions** Refer to Figure 2 | Symbol | Parameter | Conditions | Min | Typ
(Note 8) | Max | Unit | |--------------------|-------------------------|-----------------------------|-----------------------|-----------------|-----|-----------------| | V_{CCB} | Reference Voltage (B) | | $V_{CCA}+0.6$ | 2.1 | 5 | V | | V _{I(EN)} | Input Voltage on Pin EN | | V _{CCA} +0.6 | 2.1 | 5 | V | | V_{CCA} | Reference Voltage (A) | | 0 | 1.5 | 4.4 | V | | $I_{sw(pass)}$ | Pass Switch Current | | | 14 | | mA | | I _{ref} | Reference Current | Transistor | | 5 | | μΑ | | T_{AMB} | Ambient Temperature | Operating
in
Free-Air | -40 | | +85 | ${\mathfrak C}$ | Note 8: All typical values are at $T_{AMB}=25$ °C. #### Sizing Pull-Up Resistor The pull-up resistor value needs to limit the current through the pass transistor when it is in the ON state to about 15mA. This ensures a pass voltage of 260mV to 350mV. If the current through the pass transistor is higher than 15mA, the pass voltage also is higher in the ON state. To set the current through each pass transistor at 15mA, the pull-up resistor value is calculated as: $$R_{PU} = \frac{V_{pu(D)} - 0.35V}{0.015 A}$$ The table below summarizes resistor reference voltages and currents at 15mA, 10mA, and 3mA. The resistor values shown in the +10 % column or a larger value should be used to ensure that the pass voltage of the transistor would be 350 mV or less. The external driver must be able to sink the total current from the resistors on both sides of the UM2001P device at 0.175V, although the 15mA only applies to current flowing through the UM2001P device. # **Pull-Up Resistor Values** Calculated for V_{OL} =0.35V; assumes output driver V_{OL} =0.175V at stated current. | | Pull-Up Resistor Value (Ω) | | | | | | | | |-------------|----------------------------|------------------|---------|------------------|---------|------------------|--|--| | N/ | 1 | 5mA | 1 | 0mA | 3mA | | | | | $V_{pu(D)}$ | Nominal | +10%
(Note 9) | Nominal | +10%
(Note 9) | Nominal | +10%
(Note 9) | | | | 5V | 310 | 341 | 465 | 512 | 1550 | 1705 | | | | 3.3V | 197 | 217 | 295 | 325 | 983 | 1082 | | | | 2.5V | 143 | 158 | 215 | 237 | 717 | 788 | | | | 1.8V | 97 | 106 | 145 | 160 | 483 | 532 | | | | 1.5V | 77 | 85 | 115 | 127 | 383 | 422 | | | | 1.2V | 57 | 63 | 85 | 94 | 283 | 312 | | | Note 9: +10% to compensate for V_{CC} range and resistor tolerance. # **Package Information** # **UM2001P SOT363** # **Outline Drawing** | DIMENSIONS | | | | | | | | | |------------|---------|-------|------|--------|---------|-------|--|--| | Crumbal | MIL | LIMET | ERS | INCHES | | | | | | Symbol | Min | Тур | Max | Min | Тур | Max | | | | A | 0.90 | 1 | 1.10 | 0.035 | ı | 0.043 | | | | A1 | 0.00 | 0.05 | 0.10 | 0.000 | 0.002 | 0.004 | | | | A2 | 0.90 | - | 1.00 | 0.035 | ı | 0.039 | | | | b | 0.10 | 0.25 | 0.35 | 0.004 | 0.010 | 0.014 | | | | c | 0.08 | 0.11 | 0.22 | 0.003 | 0.004 | 0.009 | | | | D | 1.80 | 2.15 | 2.20 | 0.071 | 0.085 | 0.087 | | | | Е | 1.15 | 1.30 | 1.35 | 0.045 | 0.051 | 0.053 | | | | E1 | 2.00 | - | 2.45 | 0.079 | - | 0.096 | | | | e | 0.65BSC | | | C | 0.026BS | C | | | | L | 0.25 | - | 0.46 | 0.010 | - | 0.018 | | | | θ | 0 ° | - | 8° | 0° | - | 8° | | | # **Land Pattern** ## NOTES: - 1. Compound dimension: 2.15×1.30; - 2. Unit: mm; - 3. General tolerance ± 0.05 mm unless otherwise specified; - 4. The layout is just for reference. # **Tape and Reel Orientation** ### **GREEN COMPLIANCE** Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions. All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit: http://www.union-ic.com/index.aspx?cat_code=RoHSDeclaration ### IMPORTANT NOTICE The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.