

4-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Application

UM3284QS *QFN14 3.5*×3.5 UM3284QA *QFN12 1.7*×2.0 UM3284UE *TSSOP14*

General Description

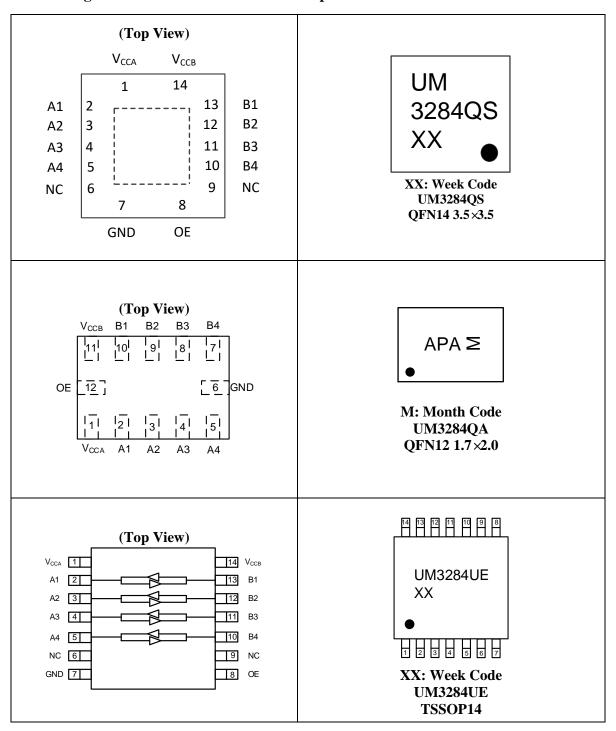
The UM3284 is 4-channel ESD-protected level translator provides the level shifting necessary to allow data transfer in a multi-voltage system. Externally applied voltages, V_{CCB} and V_{CCA} , set the logic levels on either side of the device. A low-voltage logic signal present on the V_{CCA} side of the device appears as a low-voltage logic signal on the V_{CCB} side of the device, and vice-versa. The UM3284 bidirectional level translator utilizes a transmission-gate based design to allow data translation in either direction ($V_{CCA} \leftrightarrow V_{CCB}$) on any single data line. The UM3284 accepts V_{CCA} from +1.2V to +3.6V and V_{CCB} from +1.65V to +5.5V, making it ideal for data transfer between low-voltage ASICs / PLDs and higher voltage systems.

The UM3284 enters a three-state output mode to reduce supply current when output enable (OE) is low. The OE input circuit is supplied by V_{CCA} . The UM3284 features $\pm 7kV$ ESD protection on the V_{CCB} side for greater protection in applications that route signals externally.

The UM3284QS is available in QFN14 3.5×3.5 package. The UM3284QA is available in QFN12 1.7×2.0 package and the UM3284UE is available in TSSOP14 package.

Applications

- Handsets
- Smart phones
- Tablets
- Desktop PCs


Features

- Max Data Rates
 - 60Mbps(Push Pull)
 - 2Mbps(Open Drain)
- 1.2V to 3.6V on A port and 1.65V to 5.5V on B port ($V_{CCA} \le V_{CCB}$)
- No Direction-Control Signal Needed
- No Power-Supply Sequencing Required V_{CCA} or V_{CCB} Can Be Ramped First
- Low Power Consumption
- ±7kV ESD Protection on B port
- Latch-Up Performance Exceeds 200mA

Pin Configurations

Top View

Pin Description

Pin Name	Function
A1	Input/Output 1. Referenced to V _{CCA}
V_{CCA}	A-Port supply voltage. $1.2V \le V_{CCA} \le 3.6V$ and $V_{CCA} \le V_{CCB}$.
A2	Input/Output 2. Referenced to V _{CCA}
A3	Input/Output 3. Referenced to V _{CCA}
A4	Input/Output 4. Referenced to V _{CCA}
OE	3-state output enable. Pull OE low to place all outputs in 3-state mode.
OE	Referenced to V _{CCA}
GND	Ground
B4	Input/Output 4. Referenced to V _{CCB}
В3	Input/Output 3. Referenced to V _{CCB}
B2	Input/Output 2. Referenced to V _{CCB}
V_{CCB}	B-Port supply voltage. 1.65V\(\leq V_{CCB} \leq 5.5V\)
B1	Input/Output 1. Referenced to V _{CCB}

Ordering Information

Part Number	Packaging Type	Marking Code	Shipping Qty
UM3284QS	QFN14 3.5×3.5	UM3284QS	3000pcs/13Inch Tape & Reel
UM3284QA	QFN12 1.7×2.0	APA	3000pcs/7Inch Tape & Reel
UM3284UE	TSSOP14	UM3284UE	3000pcs/13Inch Tape & Reel

Absolute Maximum Ratings (Note 1)

Over operating free-air temperature range (unless otherwise noted)

Symbol	Parameter		7	Value	Unit
Symbol	1 at affleter		Min	Max	Omt
V_{CCA}	Supply Voltage Range		-0.5	+4.5	V
V_{CCB}	Supply Voltage Range	-0.5	+6.5	V	
V_{I}	Input Voltage Range	A ports	-0.5	+4.5	V
V I	input voitage Kange	B ports	-0.5	+6.5	•
	Voltage Range applied to any output	A ports	-0.5	+4.5	
$V_{\rm O}$	in the high-impedance or power-off state	B ports	-0.5	+6.5	V
V	Voltage Range applied to any output	A ports	-0.5	$V_{CCA}+0.5$	V
$V_{\rm o}$	in the high or low state (Note 2)	B ports	-0.5	$V_{CCB}+0.5$	V
I_{IK}	Input Clamp Current	$V_I < 0$		-50	mA
I_{OK}	Output Clamp Current	$V_0 < 0$		-50	mA
$I_{\rm O}$	Continuous Output Current		-50	+50	mA
	Continuous Current through V _{CCA} , V _{CC}	-100	+100	mA	
T_{OP}	Operating Temperature Range	-40	+85	\mathcal{C}	
T_{J}	Junction Temperature	-40	+150	$^{\circ}$	
T_{STG}	Storage Temperature Range		-65	+150	${\mathcal C}$

Note1. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Note2. The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

Recommended Operating Conditions (Note 1, 2)

Symbol	Paramete	r	V _{CCA}	V_{CCB}	Min	Max	Unit
V _{CCA}	Supply Volta	go.			1.2	3.6	V
V_{CCB}	Supply Volta	ge			1.65	5.5	V
		A- Port	1.2V to 1.95V	2.3V to 5.5V	V _{CCI} -0.2	V_{CCI}	v
$V_{ m IH}$	V _{IH} High Level Input Voltage	11 1 010	2.3V to3.6V		$V_{\rm CCI}$ -0.4	V_{CCI}	·
	voltage	B- Port	1 2V/ to 2 6V/	2.3V to 5.5V	V _{CCI} -0.4	V_{CCI}	V
		OE	1.2V to 3.6V	2.5 V 10 5.5 V	V _{CCA} ×0.65	5.5	V
		A- Port			0	0.15	
$V_{\rm IL}$	Low Level Input	B- Port	1.2V to 3.6V	2.3V to 5.5V	0	0.15	V
	Voltage	OE			0 V ₀	_{CCA} ×0.35	
		A-Port push-pull driving				10	
Δt/Δv	Input Transition Rise or Fall Time	B-Port push-pull driving	1.2V to 3.6V	2.3V to 5.5V		10	ns/V
		Control input				10	

Note 1. V_{CCI} is the supply voltage associated with the input port.

Note2. V_{CCA} must be less than or equal to V_{CCB} , and V_{CCA} must not exceed 3.6 V.

Thermal Information

Thermal Metric	UM3284QS	UM3284QA	UM3284UE	Unit
$R_{ heta JA}$	52.8	119.8	41.9	97.JV
$R_{ heta JC}$	27.7	42.6	32.8	℃/W

Electrical Characteristics (Note 1, 2, 3)

Over recommended operating free-air temperature range (unless otherwise noted)

De	arameter	Test Conditions	$\mathbf{V}_{\mathbf{CCA}}$	V_{CCB}	$T_A = 1$	25°C	-40°C	to 85°C	Unit
Га	ai ailletei	Test Conditions	▼ CCA	▼ CCB	Тур	Max	Min	Max	Omt
	V_{OHA}	I_{OH} =-20 μ A V_{IB} \geqslant V_{CCB} -0.4 V	1.2V	1.65V to 5.5V	$V_{CC^A} imes$	0.67			V
		$I_{OL}=135uA, V_{IB} \leq 0.15V$	1.2V	1.65V to 5.5V		0.25			
		$I_{OL}=180uA, V_{IB} \leq 0.15V$	1.4V	1.65V to 5.5V				0.4	
	V_{OLA}	$I_{OL} = 220uA, V_{IB} \le 0.15V$	1.65V	1.65V to 5.5V				0.4	V
		$I_{OL} = 300uA, V_{IB} \le 0.15V$	2.3V	1.65V to 5.5V				0.4	
		$I_{OL} = 400 \text{uA}, V_{IB} \leq 0.15 \text{V}$	3V	1.65V to 5.5V				0.55	
	V_{OHB}	I_{OH} =-20 μ A V_{IA} \geqslant V_{CCA} -0.2 V	1.2V	1.65V to 5.5V	$V_{CCB} \times$	0.67			V
		$I_{OL}=220uA, V_{IA} \leq 0.15V$	1.2V to 3.6V	1.65				0.4	
	***	$I_{OL} = 300 \text{uA}, V_{IA} \leq 0.15 \text{V}$	1.2V to 3.6V	2.3				0.4	V
	V_{OLB}	$I_{OL} = 400 \text{uA}, V_{IA} \leq 0.15 \text{V}$	1.2V to 3.6V	3				0.55	V
		$I_{OL} = 620 \text{uA}, V_{IA} \leq 0.15 \text{V}$	1.2V to 3.6V	4.5				0.55	
I_{I}	OE	V _I =V _{CCI} or GND	1.2V	1.65V to 5.5V		±1		<u>+2</u>	μA
$I_{\rm OZ}$	A or B Port	OE=V _{IL}	1.2V	1.65V to 5.5V		±1		<u>±2</u>	μΑ
			1.2V	1.65V to 5.5V	1.5			<u>+2</u>	
	I_{CCA}	V _I =V _O =open,	1.5V to 3.6V	2.3V to 5.5V				2	μA
	ICCA	$I_O=0$	3.6V	0V				2	μ21
			0V	5.5V				-1	
		V V	1.2V	1.65V to 5.5V	1.5				
	I_{CCB}	$V_{I}=V_{O}=open,$ $I_{O}=0$	1.5V to 3.6V 3.6V	2.3V to 5.5V 0V				-1	μA
		10-0	0V	5.5V				1.2	
		V _I =V _{CCI} or GND	1.2V	2.3V to 5.5V	3			1.2	
$I_{\rm C}$	$I_{CCA} + I_{CCB}$	$I_0=0$	1.5V to 3.6V	2.3V to 5.5V				8	μA
	I _{CCZA}	V _I =V _O =open, I _O =0, OE=GND	1.2V	1.65V to 5.5V	0.05				μΑ
	I _{CCZB}	V _I =V _O =open, I _O =0, OE=GND	1.2V	1.65V to 5.5V	4				μΑ
C_{i}	OE		3.3V	3.3V	4.5			5.5	pF
C_{iO}	A Port		3.3V	3.3V	6			7	pF
C10	B Port		J.J 1	3.5 ¥	5.5			6	P,

Note1. V_{CCI} is the supply voltage associated with the input port.

Note2. V_{CCO} is the supply voltage associated with the output port.

Note3. V_{CCA} must be less than or equal to V_{CCB} , and V_{CCA} must not exceed 3.6 V.

Timing Requirements

Over recommended operating free-air temperature range, V_{CCA} = 1.2V (unless otherwise noted)

			$V_{CCB}(V)$					
			1.8(TYP)	2.5(TYP)	3.3(TYP)	5(TYP)	Unit	
Data	Push-pu	111	20	20	20	20	Mbps	
Rate	Open-dra	ain	2	2	2	2	Miops	
t _w Pulse	Push-pull	Data	50	50	50	50	na	
duration	Open-drain	inputs	500	500	500	500	ns	

Timing Requirements

Over recommended operating free-air temperature range, V_{CCA} = 1.5 $V\pm0.1V$ (unless otherwise noted)

			=1.8V 15V	V _{CCB} : ±0.2	=2.5V 2V	V _{CCB} = ±0.		V _{CCI}	3=5V .5V	Unit	
			Min	Max	Min	Max	Min	Max	Min	Max	
Data	Push-pull			40		60		60		50	Mhna
Rate	Open-drain			2		2		2		2	Mbps
tw Pulse	Push-pull	Data	25		16.7		16.7		20		nc
duration	Open-drain	inputs	500		500	•	500		500		ns

Timing Requirements

Over recommended operating free-air temperature range, $V_{\text{CCA}} = 1.8V \pm 0.15V$ (unless otherwise noted)

		V _{CCB} = ±0.1		V _{CCB} = ±0.	=2.5V .2V	V _{CCB} = ±0.		V _{CCB} ±0		Unit	
			Min	Max	Min	Max	Min	Max	Min	Max	
Data	Push-pull			40		60		60		60	Mhna
Rate	Open-drain			2		2		2		2	Mbps
tw Pulse	Push-pull	Data	25		16.7		16.7		16.7		***
duration	Open-drain	inputs	500		500		500		500		ns

Timing Requirements

Over recommended operating free-air temperature range, V_{CCA} = 2.5 $V \pm 0.2V$ (unless otherwise noted)

				=2.5V .2V	V _{CCB} = ±0.	=3.3V 3V		3=5V .5V	Unit
			Min	Max	Min	Max	Min	Max	
Data	Pus	Push-pull		60		60		60	Mhna
Rate	Oper	Open-drain		2		2		2	Mbps
t _w Pulse	Push-pull	Data innuta	16.7		16.7		16.7		
duration	Open-drain	Data inputs	500		500		500		ns

Timing Requirements

Over recommended operating free-air temperature range, V_{CCA} = 3.3V \pm 0.3V (unless otherwise noted)

			V _{CCB} =3	.3V±0.3V	V _{CCB} =	5V±0.5V	Unit
			Min	Max	Min	Max	UIII
Data	Push-pull			60		60	Mhna
Rate	Opei	n-drain		2		2	Mbps
t _w Pulse	Push-pull	Data innuta	16.7		16.7		ma
duration	Open-drain	Data inputs	500		500		ns

 $\begin{tabular}{ll} \textbf{Switching Characteristics} \\ \textbf{Over recommended operating free-air temperature range, V_{CCA}= 1.2V (unless otherwise noted)} \end{tabular}$

Parameter	Test	Conditions	V _{CCB} =1.8V ±0.15V TYP	V _{CCB} =2.5V ±0.2V TYP	V _{CCB} =3.3V ±0.3V TYP	V _{CCB} =5V ±0.5V TYP	Unit
$t_{ m PHL}$	A-B	Push-pull Open-drain	9 15	5.9 11.1	5.7 11	5.5 11.1	
		Push-pull	8	5.5	5	5	ns
$t_{\rm PLH}$	A-B	Open-drain	800	700	600	500	
		Push-pull	6.4	6	5.8	5.6	
$t_{ m PHL}$	B-A	Open-drain	11	8.8	7.6	5.9	
		Push-pull	5.6	4.1	3.6	3.2	ns
$t_{\rm PLH}$	B-A	Open-drain	720	600	500	380	
t _{en}	OE-A OE-B	Push-pull	200	200	200	200	ns
t _{dis}	OE-A OE-B	Push-pull	150	150	150	150	ns
	A port	Push-pull	7.9	9	8	10	ne
t_{rA}	rise time	Open-drain	480	420	380	230	ns
+	B port	Push-pull	11	4	1.8	1.5	ns
t_{rB}	rise time	Open-drain	470	350	240	200	115
4	A port	Push-pull	7	4.8	4.3	3.8	
t_{fA}	fall time	Open-drain	3.5	3.1	2.8	2.1	ns
4	B port	Push-pull	4.6	2.8	2.2	1.9	
t_{fB}	fall time	Open-drain	7	2.7	2.2	1.9	ns
t _{SK(O)}	Channel- to-Chann el	Push-pull	1	1	1	1	ns
Max data	A or B	Push-pull	20	20	20	20	Mbps
rate	AUD	Open-drain	2	2	2	2	wiops

 $\begin{array}{l} \textbf{Switching Characteristics} \\ \textbf{Over recommended operating free-air temperature range, } V_{CCA} = 1.5 V \pm 0.1 V \text{ (unless otherwise noted)} \end{array}$

Paramete r	Test Conditions			₃ =1.8V 15V	±(_B =2.5V 0.2V	±0.3V		±0.5V		Unit
ľ			Min	Max	Min	Max	Min	Max	Min	Max	
t	A-B	Push-pull		12		10		9		9	ns
$t_{ m PHL}$	A-D	Open-drain	4	21	3.6	20	3.5	19.5	3.5	19.5	
f.,, ,,	A-B	Push-pull		12		10		9.8		9.7	- 115
t _{PLH}	A-D	Open-drain	182	720	143	554	114	473	81	384	
t _{PHL}	B-A	Push-pull		12.7		11.1		11		12	
ЧНL	D-A	Open-drain	3.4	20	3.1	14.5	2.8	11	2.5	7.5	ns
f.,, ,,	B-A	Push-pull		11		7		6.5		5.5	113
$t_{\rm PLH}$		Open-drain	186	745	147	603	118	519	84	407	
t _{en}	OE-A OE-B	Push-pull		200		200		200		200	ns
t _{dis}	OE-A OE-B	Push-pull		150		150		150		150	ns
t_{rA}	A port	Push-pull	3.5	13.1	3	9.8	3.1	9	3.2	8.3	ns
ι _r Α	rise time	Open-drain	147	982	115	716	92	592	66	481	
$t_{ m rB}$	B port	Push-pull	2.9	11.4	1.9	9.1	0.9	4.7	0.7	2.6	ns
чВ	rise time	Open-drain	135	1020	91	756	58	653	20	370	113
t	A port	Push-pull	2.3	9.9	1.7	7.7	1.6	6.8	1.7	6	ns
t_{fA}	fall time	Open-drain	2.4	10	2.1	7.9	1.7	7	1.5	6.2	115
	B port	Push-pull	2	8.7	1.3	7	0.9	4.5	0.8	3.1	ns
$ m t_{fB}$	fall time	Open-drain	1.2	11.5	1.3	8.6	1	9.6	0.5	7.7	
t _{SK(O)}	Channel- to-Chann el	Push-pull		1		1		1.1		1	ns
Max data	A or B	Push-pull	40		60		60		50		Mbps
rate	AUD	Open-drain	2		2	·	2		2		wiops

 $\begin{tabular}{ll} \textbf{Switching Characteristics} \\ \textbf{Over recommended operating free-air temperature range, V_{CCA}= 1.8V ± 0.15V (unless otherwise noted)} \end{tabular}$

Parameter	Test Conditions		V _{CCB} =1.8V ±0.15V		V _{CCB} =2.5V ±0.2V		V _{CCB} =3.3V ±0.3V		V _{CCB} =5V ±0.5V		Unit	
		Min	Max	Min	Max	Min	Max	Min	Max			
torr	A-B	Push-pull		8.2		7.5		6.5		6.2	ns	
t _{PHL}	А-Б	Open-drain	3.6	18	3.2	17	3.1	16	3.1	16		
tovy	A-B	Push-pull		9		7		6.5		6.3	113	
$t_{\rm PLH}$	A-D	Open-drain	194	729	155	584	126	466	90	346		
t_{PHL}	B-A	Push-pull		9.8		8		7.4		7		
PHL	D /I	Open-drain	3.4	17.5	2.8	12.5	2.5	7.6	2.1	6.5	ns	
t _{ne ee}	B-A	Push-pull		10.2		7		5.8		5	113	
t _{PLH}	D-A	Open-drain	197	733	159	578	129	459	93	323		
t _{en}	OE-A OE-B	Push-pull		200		200		200		200	ns	
t _{dis}	OE-A OE-B	Push-pull		150		150		150		150	ns	
, A po	A port	Push-pull	3.1	11.9	2.6	8.6	2.7	7.8	2.8	7.2	ns	
t_{rA}	rise time	Open-drain	155	996	124	691	100	508	72	350		
t	B port	Push-pull	2.8	10.5	1.7	7.2	1.2	5.2	0.7	2.7	ns	
t_{rB}	rise time	Open-drain	132	1001	106	677	73	546	32	323		
.	A port	Push-pull	2.1	8.8	1.6	6.6	1.4	5.7	1.4	4.9	- ns	
t_{fA}	fall time	Open-drain	2.2	9	1.7	6.7	1.4	5.8	1.5	5.2		
4	B port	Push-pull	2	8.3	1.3	5.4	0.9	3.9	0.7	3		
$ m t_{fB}$	fall time	Open-drain	0.8	10.5	0.7	10.7	1	9.6	0.6	7.8	ns	
t _{SK(O)}	Channel- to-Chann el	Push-pull		1		1		1.1		1	ns	
Max data	A D	Push-pull	40		60		60		60		Mha	
rate	A or B	Open-drain	2		2		2		2		Mbps	

Switching Characteristics Over recommended operating free-air temperature range, V_{CCA} = 2.5V ±0.2V (unless otherwise noted)

Parameter	Test Conditions			=2.5V .2V Max	V _{CCB} =3.3V ±0.3V Min Max		V _{CCB} =5V ±0.5V Min Max		Unit	
		Push-pull	1,111	5	1,111	4.6	1,111	4.1		
t_{PHL}	A-B	Open-drain	2.4	13.6	2.3	13.5	2.2	13		
,	A.D.	Push-pull		5.2		4.3		3.9	ns	
t_{PLH}	A-B	Open-drain	149	592	125	550	93	400		
4	D. A	Push-pull		5.4		4.7		4.2		
t_{PHL}	B-A	Open-drain	2.5	10	2.2	9	1.8	6.5		
4	D. A	Push-pull		5.9		4.4		3.5	ns	
$t_{\rm PLH}$	B-A	Open-drain	150	595	126	481	94	345		
t _{en}	OE-A OE-B	Push-pull		200		200		200	ns	
t _{dis}	OE-A OE-B	Push-pull		150		150		150	ns	
4	A mont rigo timo	Push-pull	2	7.3	2.1	6.4	2.2	5.8	ns	
t_{rA}	A port rise time	Open-drain	110	692	93	529	68	369	115	
+	B port rise time	Push-pull	1.8	6.5	1.3	5.1	0.7	3.4		
t_{rB}	B port rise time	Open-drain	107	693	79	483	41	304	ns	
4	A most fall time	Push-pull	1.5	5.7	1.2	4.7	1.3	3.8	ns	
$ m t_{fA}$	A port fall time	Open-drain	1.5	5.6	1.2	4.7	1.1	4		
_	D. mant fall time	Push-pull	1.4	5.4	0.9	4.1	0.7	3		
$ m t_{fB}$	B port fall time	Open-drain	0.4	14.2	0.5	19.4	0.4	3	ns	
t _{SK(O)}	Channel-to-Channel	Push-pull		1		1.2		1	ns	
Max data	A on D	Push-pull	60		60		60		Mhns	
rate	A or B	Open-drain	2		2		2		Mbps	

 $\begin{tabular}{ll} \textbf{Switching Characteristics} \\ \textbf{Over recommended operating free-air temperature range, V_{CCA}= 3.3V $\pm 0.3V$ (unless otherwise noted) T_{CCA}= 3.3V $\pm 0.3V$ (unless oth$

Parameter	Test Co	V _{CCB} =3	3V ±0.3V	V _{CCB} =	Unit		
		Min	Max	Min	Max		
4	A.D.	Push-pull		3.8		3.5	
$t_{ m PHL}$	A-B	Open-drain	2	8.4	1.9	8.2	
+	A-B	Push-pull		3.9		3.5	ns
t_{PLH}	A-D	Open-drain	111	500	87	360	
t	B-A	Push-pull		4.2		3.8	
t_{PHL}	D-A	Open-drain	2.1	6	1.7	5	ns
t	B-A	Push-pull		3.8		3.3	115
t_{PLH}	D-A	Open-drain	112	449	86	370	
$t_{\rm en}$	OE-A OE-B Push-pull			200		200	ns
$t_{ m dis}$	OE-A OE-B	Push-pull		150		150	ns
t_{rA}	A port rise time	Push-pull	1.8	5.7	1.9	5	ns
ι _r Α	A port rise time	Open-drain	75	446	57	337	115
_	D mant vice time	Push-pull	1.5	5	1	3.6	
$t_{ m rB}$	B port rise time	Open-drain	72	427	40	290	ns
	A a fall 4: a	Push-pull	1.2	4.5	1.1	3.5	
t_{fA}	A port fall time	Open-drain	1.1	4.4	1	3.7	ns
4	D. m. and fall disco	Push-pull	1.1	4.2	0.8	3.1	
$t_{ m fB}$	B port fall time	Open-drain	1	4.2	0.8	3.1	ns
t _{SK(O)}	Channel-to-Channe	Push-pull		1		1	ns
Max data	A on D	Push-pull	60		60		Mhn
rate	A or B	Open-drain	2		2		Mbps

Applications Information

The UM3284 device is a directionless voltage-level translator specifically designed for translating logic voltage levels. The A-port accepts I/O voltages ranging from 1.2 V to 3.6 V. The B-port accepts I/O voltages from 1.65 V to 5.5 V. The device uses pass gate architecture with edge rate accelerators (one shots) to improve the overall data rate. The pull-up resistors, commonly used in open-drain applications, have been conveniently integrated so that an external resistor is not needed. While this device is designed for open-drain applications, the device can also translate push-pull CMOS logic outputs.

Block Diagram

Each A-port I/O has a pull-up resistor (R_{PUA}) to V_{CCA} and each B-port I/O has a pull-up resistor (R_{PUB}) to V_{CCB} . R_{PUA} and R_{PUB} have a value of $40k\Omega$ when the output is driving low. R_{PUA} and R_{PUB} have a value of $4k\Omega$ when the output is driving high. R_{PUA} and R_{PUB} are disabled when OE = Low.

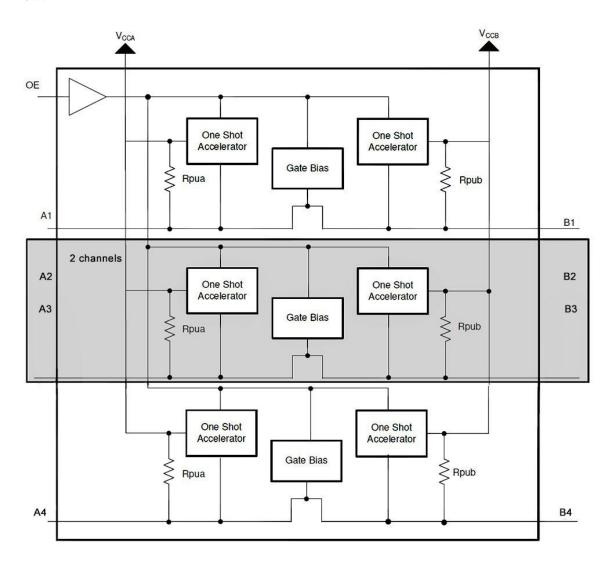


Figure 1 Block Diagram of UM3284 I/O Cell

Architecture

Figure 2 describes semi-buffered architecture design this application requires for both push-pull and open-drain mode. This application uses edge-rate accelerator circuitry (for both the high-to-low and low-to-high edges), a high-on-resistance N-channel pass-gate transistor (on the order of $300~\Omega$ to $500~\Omega$) and pull-up resistors (to provide DC-bias and drive capabilities) to meet these requirements. This design needs no direction-control signal (to control the direction of data flow from A to B or from B to A). The resulting implementation supports both low-speed open-drain operation as well as high-speed push-pull operation.

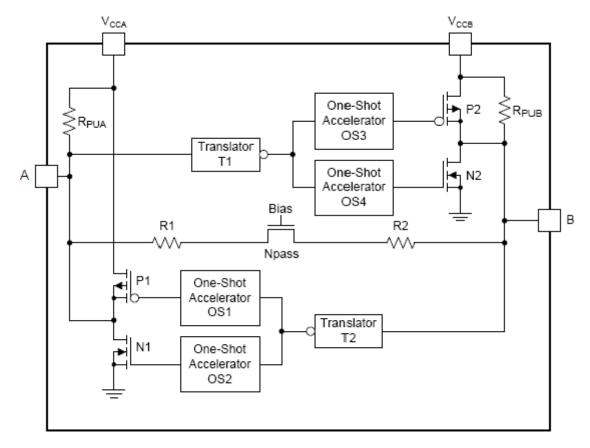


Figure 2 Architecture of UM3284 I/O Cell

When transmitting data from A-ports to B-ports, during a rising edge the one-shot circuit (OS3) turns on the PMOS transistor (P2) for a short-duration which reduces the low-to-high transition time. Similarly, during a falling edge, when transmitting data from A to B, the one-shot circuit (OS4) turns on the N-channel MOSFET transistor (N2) for a short-duration which speeds up the high-to-low transition. The B-port edge-rate accelerator consists of one-shot circuits OS3 and OS4. Transistors P2 and N2 and serves to rapidly force the B port high or low when a corresponding transition is detected on the A port.

When transmitting data from B- to A-ports, during a rising edge the one-shot circuit (OS1) turns on the PMOS transistor (P1) for a short-duration which reduces the low-to-high transition time. Similarly, during a falling edge, when transmitting data from B to A, the one-shot circuit (OS2) turns on NMOS transistor (N1) for a short-duration and this speeds up the high-to-low transition. The A-port edge-rate accelerator consists of one-shots OS1 and OS2, transistors P1 and N1 components and form the edge-rate accelerator and serves to rapidly force the A port high or low when a corresponding transition is detected on the B port.

Input Driver Requirements

The continuous DC-current sinking capability is determined by the external system-level open-drain (or push-pull) drivers that are interfaced to the UM3284 I/O pins. Because the high bandwidth of these bidirectional I/O circuits is used to facilitate this fast change from an input to an output and an output to an input, they have a modest DC-current sourcing capability of hundreds of micro-amperes, as determined by the internal pull-up resistors.

The fall time (t_{fA} , t_{fB}) of a signal depends on the edge-rate and output impedance of the external device driving UM3284 data I/Os, as well as the capacitive loading on the data lines.

Similarly, the t_{PHL} and maximum data rates also depend on the output impedance of the external driver. The values for t_{fA} , t_{fB} , t_{PHL} , and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50Ω .

Output Load Considerations

Union recommends careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to ensure that proper one-shot triggering takes place. PCB signal trace-lengths should be kept short enough such that the round trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The one-shot circuits have been designed to stay on for approximately 30 ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The one-shot duration has been set to best optimize trade-offs between dynamic $I_{\rm CC}$, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance of the UM3284 output. Therefore, Union recommends that this lumped-load capacitance is considered in order to avoid one-shot retriggering, bus contention, output signal oscillations, or other adverse system-level affects.

Enable and Disable

The UM3284 has an OE pin input that is used to disable the device by setting the OE pin low, which places all I/Os in the Hi-Z state. The disable time (t_{dis}) indicates the delay between the time when the OE pin goes low and when the outputs actually get disabled (Hi-Z). The enable time (t_{en}) indicates the amount of time the design must allow for the one-shot circuitry to become operational after the OE pin goes high.

Pull-up or Pull-down Resistors on I/O Lines

The UM3284 has the smart pull-up resistors dynamically change value based on whether a low or a high is being passed through the I/O line. Each A-port I/O has a pull-up resistor (R_{PUA}) to V_{CCA} and each B-port I/O has a pull-up resistor (R_{PUB}) to V_{CCB} . R_{PUA} and R_{PUB} have a value of $40k\Omega$ when the output is driving low. R_{PUA} and R_{PUB} have a value of $4k\Omega$ when the output is driving high. R_{PUA} and R_{PUB} are disabled when OE=Low. This feature provides lower static power consumption (when the I/Os are passing a low), and supports lower V_{OL} values for the same size pass-gate transistor, and helps improve simultaneous switching performance.

Device Functional Modes

The UM3284 device has two functional modes, enabled and disabled. To disable the device set the OE pin input low, which places all I/Os in a high impedance state. Setting the OE pin input high enables the device.

Typical Operating Circuit

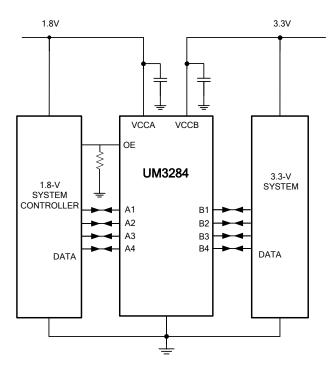
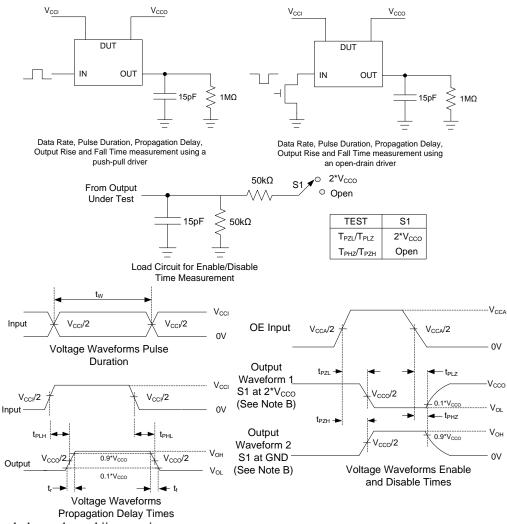



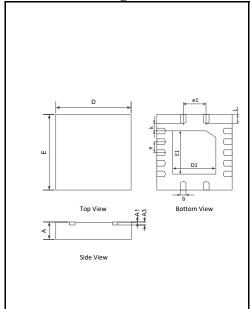
Figure 3 Typical Operating Circuit

Test Circuits

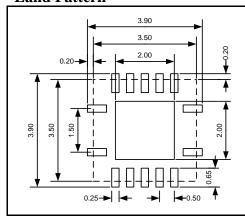
- A. C_L includes probe and jig capacitances.
- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

- C. All input pulses are supplied by generators having the following characteristics: $PRR \le 10MHz$, $Z_0 = 50\Omega$, dv/dt > 1V/ns
- D. The outputs are measured one at a time, with one transition per measurement.
- E. T_{PLZ} and T_{PHZ} are the same as t_{dis} .
- F. T_{PZL} and T_{PZH} are the same as t_{en} .
- G. V_{CCI} is the V_{CC} associated with the input port.
- H. V_{CCO} is the V_{CC} associated with the output port.
- I. All parameters and waveforms are not applicable to all devices.


Figure 4 Load Circuits and Voltage Waveforms

Package Information


UM3284QS QFN14 3.5×3.5

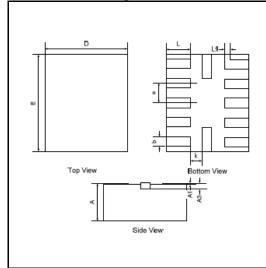
Outline Drawing

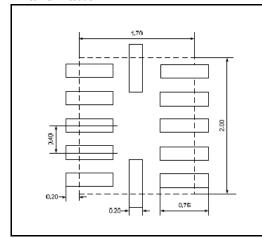
DIMENSIONS								
Symbol	MIL	LIMET	ERS	INCHES				
	Min	Тур	Max	Min	Тур	Max		
A	0.700	-	0.850	0.028	-	0.031		
A1	0.000	0.020	0.050	0.000	0.0008	0.002		
A3	0.203REF			0.008REF				
D	3.424	3.500	3.576	0.135	0.138	0.141		
Е	3.424	3.500	3.576	0.135	0.138	0.141		
D1	1.900	-	2.150	0.077	-	0.085		
E1	1.900	-	2.150	0.077	-	0.085		
k	().200MIN	1		0.008MIN			
b	0.200	0.250	0.300	0.008 0.010 0.01				
e	0.500TYP			0.020TYP				
e1	1.500TYP			0.059TYP				
L	0.324	-	0.476	0.013	-	0.019		


Land Pattern

NOTES:

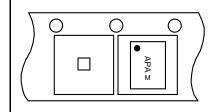
- 1. Compound dimension: 3.50×3.50;
- 2. Unit: mm;
- 3.General tolerance ±0.05mm unless otherwise specified;
- 4. The layout is just for reference.


Tape and Reel Orientation


UM3284QA QFN12 1.7×2.0

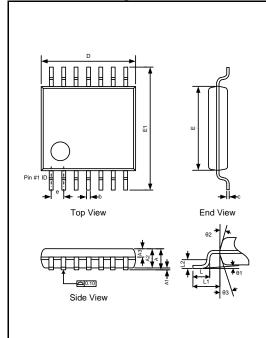
Outline Drawing

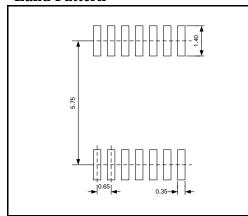
	DIMENSIONS									
Cb al	MILI	LIME'	TERS	INCHES						
Symbol	Min	Тур	Max	Min	Тур	Max				
A	>0.5	0.55	0.60	>0.020	0.022	0.024				
A1	0.00	-	0.05	0.000	-	0.002				
A3	0	.15RE	F	0.006REF						
b	0.15	0.20	0.25	0.006	0.008	0.010				
D	1.75	1.80	1.85	0.069	0.071	0.073				
Е	2.55	2.60	2.65	0.100	0.102	0.104				
e	0.40BSC			0.016BSC						
L	0.30	0.40	0.50	0.012	0.016	0.020				


Land Pattern

NOTES:

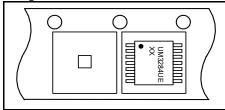
- 1. Compound dimension: 1.7×2.0 ;
- 2. Unit: mm;
- 3.General tolerance ± 0.05 mm unless otherwise specified;
- 4. The layout is just for reference.


Tape and Reel Orientation

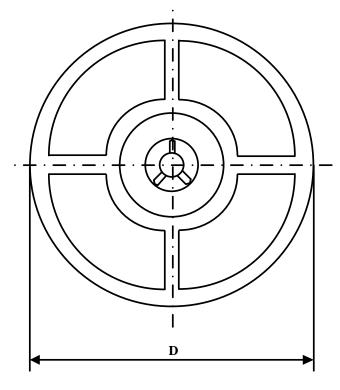

UM3284UE TSSOP14

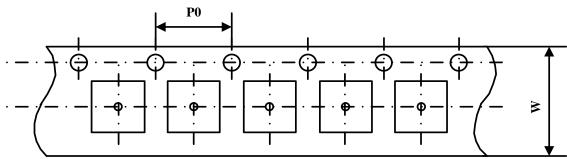
Outline Drawing

DIMENSIONS								
Crombal	MIL	LIME	TERS	INCHES				
Symbol	Min	Тур	Max	Min	Тур	Max		
A	-	-	1.20	-	-	0.047		
A1	0.05	ı	0.15	0.002	-	0.006		
A2	0.90	1.00	1.05	0.035	0.039	0.041		
A3	0.34	0.44	0.54	0.013	0.017	0.021		
b	0.20	-	0.28	0.008	-	0.011		
С	0.10	-	0.19	0.004	-	0.007		
D	4.86	4.96	5.06	0.191	0.195	0.199		
Е	4.30	4.40	4.50	0.169	0.173	0.177		
E1	6.20	6.40	6.60	0.244	0.252	0.260		
e	().65BS(C	().026BS0			
L	0.45	0.60	0.75	0.018	0.024	0.030		
L1	1	1.00RE	F	().039REI	17.		
L2	0.25BSC			0.010BSC				
θ1	0 °	-	8°	0 °	-	8°		
θ2	10°	12°	14 °	10°	12°	14 °		
θ3	10°	12°	14°	10°	12°	14°		


Land Pattern

NOTES:


- 1. Compound dimension: 4.96×4.40;
- 2. Unit: mm;
- 3. General tolerance ± 0.05 mm unless otherwise specified;
- 4. The layout is just for reference.


Tape and Reel Orientation

Packing Information

Part Number	Package Type	Carrier Width(W)	Pitch(P0)	Reel Size(D)
UM3284QS	QFN14 3.5×3.5	12 mm	4 mm	330 mm
UM3284QA	QFN12 1.7×2.0	8 mm	4 mm	180 mm
UM3284UE	TSSOP14	12 mm	4 mm	330 mm

GREEN COMPLIANCE

Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit:

http://www.union-ic.com/index.aspx?cat_code=RoHSDeclaration

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc

Add: Unit 606, No.570 Shengxia Road, Shanghai 201210

Tel: 021-51093966 Fax: 021-51026018

Website: www.union-ic.com