

150mA, 30V, 1μA I_Q Voltage Regulators with Enable UM1470S-xx SOT23-5 UM1470Y-xx SOT89-3 UM1480S-xx SOT23-5 UM1481S-xx SOT23-5 UM1482S-xx SOT23-5 UM1480DA-xx DFN6 2.0*2.0

General Description

The UM1470/UM148X series of linear regulators are ultralow, quiescent current devices designed for power-sensitive applications. A precision band-gap and error amplifier provides 2% accuracy over temperature. Quiescent current of only 1 μ A makes these devices ideal solutions for battery-powered, always-on systems that require very little idle-state power dissipation. These devices have thermal-shutdown, current-limit, and reverse-current protections for added safety. Shutdown mode is enabled by pulling the EN pin low. The shutdown current in this mode goes down to 150nA, typical. The UM1470 series is available in SOT23-5 and SOT89-3 packages. The UM1480S, UM1481S and UM1482S are available in SOT23-5 package. UM1480DA is available in DFN6 2.0*2.0 package.

Applications

Features

- Zigbee[™] Networks
- Home Automation
- Metering
- Weighing Scales
- Portable Power Tools
- Remote Control Devices
- Wireless Handsets, Smart Phones, PDAs, WLAN, and Other PC Add-On Cards
- White Goods

- Ultralow I_Q:1 μA
- Reverse Current Protection
- Low I_{SHUTDOWN}: 150nA
- Input Voltage Range: 2.7V to 30V
- Supports 200mA Peak Output
- 2% Accuracy Over Temperature
- Available in Fixed-Output Voltages: 1.2V to 6.5V
- Thermal Shutdown and Overcurrent Protection
- Packages: SOT23-5, SOT89-3, DFN6 2.0*2.0

Typical Application Circuit

UM1470/UM148X

Pin Configurations

Top View

UM1470/UM148X

Ordering Information

Marking information

Part Number	Output Voltage	Packaging Type	Marking Code	Shipping Qty	
UM1470S-12	1.2V		5NL		
UM1470S-135	1.35V		5NM		
UM1470S-15	1.5V		5NJ		
UM1470S-16	1.6V		5NK		
UM1470S-18	1.8V		5NN		
UM1470S-19	1.9V		5NP		
UM1470S-25	2.5V		5NQ		
UM1470S-27	2.7V	SOT23 5	5NR	3000pcs/7Inch	
UM1470S-28	2.8V	50125-5	5NS	Tape & Reel	
UM1470S-30	3.0V		5NT		
UM1470S-33	3.3V		5NY		
UM1470S-36	3.6V		5NU		
UM1470S-38	3.8V		5NZ		
UM1470S-39	3.9V		5PD		
UM1470S-50	5.0V		5PE		
UM1470S-60	6.0V		5PF		
UM1470Y-12	1.2V		1470-12		
UM1470Y-135	1.35V		1470-135		
UM1470Y-15	1.5V		1470-15		
UM1470Y-16	1.6V		1470-16		
UM1470Y-18	1.8V		1470-18		
UM1470Y-19	1.9V		1470-19		
UM1470Y-25	2.5V		1470-25		
UM1470Y-27	2.7V	SOT80 2	1470-27	3000pcs/7Inch	
UM1470Y-28	2.8V	50169-5	1470-28	Tape & Reel	
UM1470Y-30	3.0V		1470-30		
UM1470Y-33	11470Y-33 3.3V		1470-33		
UM1470Y-36	3.6V		1470-36		
UM1470Y-38	3.8V		1470-38		
UM1470Y-39	3.9V		1470-39		
UM1470Y-50	5.0V		1470-50		
UM1470Y-60	6.0V		1470-60		

Marking information(continue)

Part Number	Output Voltage	Packaging Type	Marking Code	Shipping Qty		
UM1480S-12	1.2V		5PL			
UM1480S-135	1.35V		5PM			
UM1480S-15	1.5V		5PJ			
UM1480S-16	1.6V		5PK			
UM1480S-18	1.8V		5PN			
UM1480S-19	1.9V		5PP			
UM1480S-25	2.5V		5PQ	3000pcs/7Inch		
UM1480S-27	2.7V	SOT22 5	5PR			
UM1480S-28	2.8V	50125-5	5PS	Tape & Reel		
UM1480S-30	3.0V		5PT			
UM1480S-33	3.3V		5PY			
UM1480S-36	3.6V		5PU			
UM1480S-38	3.8V		5PZ			
UM1480S-39	3.9V		5TF			
UM1480S-50	5.0V		5TH			
UM1480S-60	6.0V		5TL			
UM1481S-30	3.0V	SOT22 5	5TM	3000pcs/7Inch		
UM1481S-33	3.3V	50125-5	5TJ	Tape & Reel		
UM1482S-33	3.3V	SOT22 5	5TK	3000pcs/7Inch		
UM1482S-50	5.0V	50125-5	5TN	Tape & Reel		
UM1480DA-12	1.2V		AJD			
UM1480DA-15	1.5V		AJE			
UM1480DA-18	1.8V		AJF	3000pcs/7Inch		
UM1480DA-25	2.5V	DFN6 2.0×2.0	AJG			
UM1480DA-30	3.0V		AJH	Tape & Reel		
UM1480DA-33	UM1480DA-33 3.3V	AJJ				
UM1480DA-50	5.0V		AJK			

Pin Description

			Pin					
	SOT89-3		SOT	23-5		DFN6	I/O	Description
Name	UM1470 Y	UM1470 S	UM1480 S	UM1481 S	UM1482 S	UM1480 DA		
EN	_	_	3	5	5	4	Ι	Enable pin. Drive this pin high to enable the device. Drive this pin low to put the device into low current shutdown. This pin can be left floating to enable the device. The maximum voltage must remain below 6.5V
GND	1	2	2	2	1	3	_	Ground
IN	2	1	1	3	2	6	Ι	Unregulated input to the device
NC	-	3,4	4	4	4	2,5	_	No internal connection
OUT	3	5	5	1	3	1	0	Regulated output voltage. Connect a small 2.2µF or greater ceramic capacitor from this pin to ground to assure stability.

Absolute Maximum Ratings (Note1)

Specified at $T_J = -40^{\circ}$ C to 125° C (unless otherwise noted); all voltages are with respect to GND

Symbol	Parameter	Value	Unit
$V_{\rm IN}$		-0.3 to 32	
V_{EN}	voltage	-0.3 to 7	V
V _{OUT}		-0.3 to 7	
Iout	Maximum output current	Internally lin	nited
	Output short-circuit duration	Indefinit	e
P _{DISS}	Continuous total power dissipation	See Thermal Information	
TJ	Operating junction temperature, -55 to 150		°C
T _{stg}	Storage temperature	-55 to 150	°C

Note1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Work Condition

over operating junction temperature range (unless otherwise noted)

Symbol	Parameter	Value	Unit
V _{IN}	Input Voltage	2.7 to 30	V
V _{OUT}	Output voltage	1.2 to 6.5	V
V _{EN}	Enable voltage	0 to 6.5	V
TJ	Operating junction temperature	-40 to 125	°C

Thermal Information

Symbol	Danamatan		Unit			
Symbol	rarameter	SOT23-5	DFN6	SOT89-3	Umi	
θ_{JA}	Junction-to-ambient thermal resistance	212.1	73.1	54.7	°C/W	
$\theta_{JC(top)}$	Junction-to-case (top) thermal resistance	78.5	97.0	88.1	°C/W	

Electrical Characteristics

At ambient temperature $(T_A) = -40^{\circ}C$ to $+85^{\circ}C$, $V_{IN} = V_{OUT (typ)} + 1V$ or 2.7V (whichever is greater), $I_{OUT} = 1mA$, $V_{EN} = 2V$, and $C_{IN} = C_{OUT} = 2.2\mu F$ ceramic, unless otherwise noted. Typical values are at $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IN}	Input voltage range		2.7		30	V
V _{OUT}	Output voltage range		1.2		6.5	V
V	DC output occurrecy	$V_{OUT} < 3.3 V$	-2%		2%	
V OUT	DC output accuracy	V _{OUT} ≥3.3 V	-1%		1%	
	Line regulation	$\begin{array}{l} (V_{OUT(nom)}+1V,2.7V) \leq \\ V_{IN} \leq 30V \end{array}$		3	10	
ΔV_{OUT}		$V_{IN} = V_{OUT(typ)} + 1.5 V \text{ or } 3 V$				mV
	Load regulation	(whichever is greater),		20	50	
		$100\mu A \le I_{OUT} \le 150 mA$				
		UM1470/1480-33		295	650	
		I _{OUT} =50mA		275	0.50	
		UM1470/1480-33		960	1400	
		I _{OUT} =150mA		200	1100	
		UM1470/1480-50		245	500	
V_{DO}	Dropout voltage	I _{OUT} =50mA		243	500	mV
	(Note1,2)	UM1470/1480-50		690	1200	111 V
		I _{OUT} =150mA		070	1200	
		UM1470/1480-65		180	500	
		I _{OUT} =50mA		180	500	
		UM1470/1480-65		460	1000	
		I _{OUT} =150mA		400	1000	

Electrical Characteristics (continued)

At ambient temperature $(T_A) = -40^{\circ}C$ to $+85^{\circ}C$, $V_{IN} = V_{OUT(typ)} + 1$ V or 2.7 V (whichever is greater), $I_{OUT} = 1$ mA, $V_{EN} = 2$ V, and $C_{IN} = C_{OUT} = 2.2 \mu F$ ceramic, unless otherwise noted. Typical values are at $T_A = 25^{\circ}C$.

Symbol	Parameter	Conditions Min Typ Max		Unit		
I _(CL)	Output current limit (Note3)	$V_{OUT}=0.9\times V_{OUT(nom)}$	200	320	500	mA
		$I_{OUT} = 0 \text{ mA}, V_{OUT} \leq 3.3 \text{ V}$		1.3	2.05	
Τ	Ground nin ourrant	$I_{OUT} = 0 \text{ mA}, V_{OUT} > 3.3 \text{ V}$		1.4	2.25	μΑ
IGND	Oround pin current	$I_{OUT} = 0 \text{ mA}, V_{OUT} = 30 \text{ V}$		6	10	
		$I_{\rm OUT}=150\ mA$		350		
I _{shuntdo} wn	Shutdown current	$V_{EN}\!\!\leq\!\!0.4~V,~V_{IN}=2.7~V$		150		nA
	Douvon gunnlu	f=10Hz		80		
PSRR	rejection ratio	f=100Hz		62		dB
	rejection ratio	f=1000Hz		52		
V_n	Output noise voltage	BW=10Hz~100kHz, $I_{OUT}=10mA, V_{IN}=2.7V,$		190		μV _R MS
	Start un time	$V_{OUT} = 1.2 V$ $V_{OUT} = 3.3 V$		200	600	
t _{STR}	(Note4)	$V_{OUT(nom)} \ge 3.3 V$		500	1500	μs
	Enable pin high (enabled)		0.9	200	1000	¥7
V _{EN(HI)} Enable pin high (disabled)			0		0.4	
\mathbf{I}_{EN}	EN pin current	$EN = 1.0 V, V_{IN} = 5.5 V$		300		nA
т	Reverse current (flowing out of IN pin)	$V_{OUT} = 3 V,$ $V_{IN} = V_{EN} = 0 V$		10		
I(REV)	Reverse current (flowing into OUT pin)	$V_{OUT} = 3 V,$ $V_{IN} = V_{EN} = 0 V$		100		IIA
t _{sD}	Thermal shutdown	Shutdown, temperature increasing		160		°C
	Temperature	Reset, temperature decreasing		140		
ESD Rati	ings					
	Flactrostatio	Human body model (HBM), per ANSI/ESDA/JEDEC JS- 001 (Note5)		±2000		
V _(ESD)	discharge	Charged device model (CDM), per JEDEC specification JESD22-C101 (Note26	±500		V	

Note1: V_{DO} is measured with $V_{IN} = 0.98 \times V_{OUT(nom)}$.

Note2: Dropout is only valid when $V_{OUT} \ge 2.8$ V because of the minimum input voltage limits.

Note3: Measured with $V_{IN} = V_{OUT} + 3V$ for $V_{OUT} \le 2.5V$. Measured with $V_{IN} = V_{OUT} + 2.5V$ for $V_{OUT} > 2.5V$.

Note4: Startup time = time from EN assertion to $0.95 \times V_{OUT (nom)}$ and load = 47 Ω .

- Note5: JEDEC document JEP155 states that 2kV HBM allows safe manufacturing with a standard ESD control process.
- Note6: JEDEC document JEP157 states that 500V CDM allows safe manufacturing with a standard ESD control process.

Detailed Description

Overview

The UM1470/UM148X series of devices are ultralow quiescent current, low-dropout (LDO) linear regulators. The UM1470/UM148X offers reverse current protection to block any discharge current from the output into the input. The UM1470/UM148X also features current limit and thermal shutdown for reliable operation.

Functional Block Diagram

Internal Current Limit

The UM1470/UM148X series internal current limit helps protect the regulator during fault conditions. During current limit, the output sources a fixed amount of current that is largely independent of output voltage. In such a case, the output voltage is not regulated, and can be measured as ($V_{OUT} = I_{LIMIT} \times R_{LOAD}$). The PMOS pass transistor dissipates [($V_{IN} - V_{OUT}$) × I_{LIMIT}] until a thermal shutdown is triggered and the device turns off. When cool, the device is turned on by the internal thermal shutdown circuit. If the fault condition continues, the device cycles between current limit and thermal shutdown; see the Thermal Protection section for more details.

The UM1470/UM148X is characterized over the recommended operating output current range up to 150mA. The internal current limit begins to limit the output current at a minimum of 200mA of output current. The UM1470/UM148X continues to operate for output currents between 150mA and 200mA but some data sheet parameters may not be met.

Dropout Voltage

The UM1470/UM148X series use a PMOS pass transistor to achieve low dropout voltage. When $(V_{IN} - V_{OUT})$ is less than the dropout voltage (V_{DO}) , the PMOS pass device is in the linear region of operation and the input-to-output resistance is the $R_{DS(ON)}$ of the PMOS pass element. V_{DO}

approximately scales with the output current because the PMOS device functions like a resistor in dropout.

The ground pin current of many linear voltage regulators increases substantially when the device is operated in dropout. This increase in ground pin current while operating in dropout can be several orders of magnitude larger than when the device is not in dropout. The UM1470/UM148X employs a special control loop that limits the increase in ground pin current while operating in dropout. This functionality allows for the most efficient operation while in dropout conditions that can greatly increase battery run times.

Undervoltage Lockout (UVLO)

The UM1470/UM148X uses an undervoltage lockout (UVLO) circuit to keep the output shut off until the internal circuitry operates properly.

Reverse-Current Protection

The UM1470/UM148X has integrated reverse-current protection. Reverse-current protection prevents the flow of current from the OUT pin to the IN pin when output voltage is higher than input voltage. The reverse-current protection circuitry places the power path in high impedance when the output voltage is higher than the input voltage. This setting reduces leakage current from the output to the input to 10nA, typical. The reverse current protection is always active regardless of the enable pin logic state or if the OUT pin voltage is greater than 1.8V. Reverse current can flow if the output voltage is less than 1.8V and if input voltage is less than the output voltage. If voltage is applied to the input pin, then the maximum voltage that can be applied to the OUT pin is 3.6V. If the 5.0V output voltage version is used, then the maximum reverse bias voltage that can be applied to the output voltage version is used, then the maximum reverse bias voltage that can be applied to the output voltage version is used, then the maximum reverse bias voltage that can be applied to the OUT pin is 3.6V. If the 5.0V output voltage version is used, then the maximum reverse bias voltage that can be applied to the output voltage version is used, then the maximum reverse bias voltage that can be applied to the output voltage version is used, then the maximum reverse bias voltage that can be applied to the output voltage version is used, then the maximum reverse bias voltage that can be applied to the output voltage version is used, then the maximum reverse bias voltage that can be applied to the output voltage version is used, then the maximum reverse bias voltage that can be applied to the output voltage version is used, then the maximum reverse bias voltage that can be applied to the OUT pin is 3.6V.

Device Functional Modes

The UM1470/UM148X has the following functional modes:

- Enabled: When the enable pin (EN) goes above 0.9V, the device is enabled. EN is pulled high by a 300nA current source; therefore, EN can be left floating to enable the device. Do not connect EN to V_{IN}. The EN pin is clamped by a 6.5V Zener diode. Do not exceed the 7V absolute maximum rating on the enable pin or excessive current flowing into the Zener clamp will destroy the device.
- **Disabled:** When EN goes below 0.4V, the device is disabled. During this time, OUT is high impedance and the current into IN ($I_{(SHUTDOWN)}$) is typically 150nA.

Application Information

The UM1470/UM148X is a series of devices that belong to a new family of next-generation voltage regulators. These devices consume low quiescent current and deliver excellent line and load transient performance. This performance, combined with low noise and very good PSRR with little $(V_{IN} - V_{OUT})$ headroom, makes these devices ideal for RF portable applications, current limit, and thermal protection. The UM1470/UM148X is specified from -40° C to $+125^{\circ}$ C.

Input and Output Capacitor

The UM1470/UM148X devices are stable with output capacitors with an effective capacitance of 2.0 μ F or greater for output voltages below 1.5V. For output voltages equal or greater than 1.5V, the minimum effective capacitance for stability is 1.5 μ F. The maximum capacitance for stability is 47 μ F. The equivalent series resistance (ESR) of the output capacitor must be between 0 Ω and 0.2 Ω for stability. The effective capacitance is the minimum capacitance value of a capacitor after taking into account variations resulting from tolerances, temperature, and dc bias effects. X5R- and X7R-type ceramic capacitors are recommended because these capacitors have minimal variation in value and ESR over temperature. Although an input capacitor is not required for stability, good analog design practice is to connect a 0.1 μ F to 2.2 μ F capacitor from IN to GND. This capacitor counteracts reactive input sources and improves transient response, input ripple, and PSRR. An input capacitor is necessary if line transients greater than 10V in magnitude are anticipated.

Transient Response

As with any regulator, increasing the output capacitor size reduces over- and undershoot magnitude, but increases transient response duration.

Design Requirements

Table 1 summarizes the design requirements for Typical Application in page1.

Parameter	Design specification
V _{IN}	5V to 20V
V _{OUT}	3.3V
I _(IN) (no load)	<5μΑ
I _{OUT} (max)	150mA

Table 1. Design Requirements for a Wide Input, 3.3V, Low-IQ Rail Application

Detailed Design Procedure

Select a 2.2 μ F, 10V X7R output capacitor to satisfy the minimum output capacitance requirement with a 3.3V dc bias.

Select a 1.0μ F, 25V X7R input capacitor to provide input noise filtering and eliminate high-frequency voltage transients.

Power Supply Recommendations

This device is designed to operate with an input supply range of 2.7V to 30V. If the input supply is noisy, additional input capacitors with low ESR can help improve output noise performance.

Power Dissipation

The ability to remove heat from the die is different for each package type, presenting different considerations in the printed circuit board (PCB) layout. The PCB area around the device that is free of other components moves the heat from the device to ambient air. Performance data for

JEDEC low and high-K boards are given in the Thermal Information table. Using heavier copper increases the effectiveness in removing heat from the device. The addition of plated through-holes to heat-dissipating layers also improves the heatsink effectiveness.

Power dissipation depends on input voltage and load conditions. Power dissipation (P_{DISS}) is equal to the product of the output current and the voltage drop across the output pass element, as shown in Equation 1:

$$P_{\text{DISS}} = (V_{\text{IN}} - V_{\text{OUT}}) \times I_{\text{OUT}}$$
(1)

Layout Guidelines

Place input and output capacitors as close to the device pins as possible. To improve ac performance (such as PSRR, output noise, and transient response), Union recommends that the board be designed with separate ground planes for V_{IN} and V_{OUT} , with the ground plane connected only at the GND pin of the device. In addition, the ground connection for the output capacitor must be connected directly to the device GND pin.

Thermal Protection

Thermal protection disables the output when the junction temperature rises to approximately 165°C, allowing the device to cool. When the junction temperature cools to approximately 145°C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit can cycle on and off. This cycling limits the dissipation of the regulator, protecting it from damage as a result of overheating. Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heatsink. For reliable operation, limit junction temperature to 125°C, maximum. To estimate the margin of safety in a complete design (including heatsink), increase the ambient temperature until the thermal protection must trigger at least 35°C above the maximum expected ambient condition of the particular application. This configuration produces a worst-case load. The UM1470/UM148X series internal protection circuitry is designed to protect against overload conditions. This circuitry is not intended to replace proper heatsinking. Continuously running the UM1470/UM148X series into thermal shutdown degrades device reliability.

Package Information

UM1470S-xx: SOT23-5

Outline Drawing

Land Pattern

Outline Drawing DIMENSIONS D **MILLIMETERS INCHES** Symbol D1 Min Тур Max Min Тур Max 1.40 1.50 1.60 0.055 0.059 0.063 Α b 0.32 0.54 0.013 0.021 _ ш ñ 0.40 0.62 0.024 b1 0.016 --0.35 0.44 0.014 0.017 с _ _ 0.177 D 4.40 4.50 4.60 0.173 0.181 D1 1.50 0.059 0.072 -1.83 -Top View End View Е 2.30 2.50 2.60 0.091 0.098 0.102 ►8°(4X) E1 3.94 4.25 0.155 0.167 -_ 1.50TYP 0.059TYP e 0.89 1.20 0.035 0.047 L _ _ Side View

UM1470Y-xx: SOT89-3

T. . . I.D.

UM1480S/UM1481S/UM1482S-xx: SOT23-5

Outline Drawing

Land Pattern

Outline Drawing

	DIMENSIONS							
	Ghl	MILLIMETERS			INCHES			
	Symbol	Min	Тур	Max	Min	Тур	Max	
	А	0.55	-	0.80	0.022	-	0.031	
	A1	0.00	-	0.05	0.000	-	0.002	
	A3	0.20REF		0.008REF		F		
	b	0.25	0.30	0.35	0.010	0.012	0.014	
PIN 1 DÓT BY MARKING Top View Bottom View	D	1.924	2.00	2.076	0.076	0.079	0.082	
	D2	1.35	-	1.75	0.053	-	0.069	
	Е	1.924	2.00	2.076	0.076	0.079	0.082	
a Side View	E2	0.65	-	1.06	0.026	-	0.042	
	e	0	.65BS0		0	.026BSC	C	
	L	0.224	-	0.45	0.009	-	0.018	

UM1480DA-xx: DFN6 2.0×2.0

Land Pattern

GREEN COMPLIANCE

Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions.

All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit:

http://www.union-ic.com/index.aspx?cat_code=RoHSDeclaration

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc Add: Unit 606, No.570 Shengxia Road, Shanghai 201210 Tel: 021-51093966 Fax: 021-51026018 Website: www.union-ic.com